QC Summary

Quality Control Reference List

Client Name: Tierra Solutions, Inc.

SDG: PNV88

Analyte ORP	Batch Numbers 06030755201A	Sample Number 4692565 4692566 U,D 4692567 4692568 4692569 4692570 4692571 4692572 LCS
pH	06024144101A	4692565 U,D 4692566 4692567 4692568 4692569 4692570 4692571 4692572 LCS
Hexavalent Chromium	06021027603A	4693387 Blank LCS
ORP	06025755201A	4693387 LCS
рН	06021020001A	4693387 LCS
ТРН	06027112601A	4693387 Blank LCS/LCSD

ABBREVIATION KEY

U = Background M = Matrix Spike Duplicate

D = Duplicate

R = Matrix Spike

LCS = Laboratory Control Standard

LCSD = Laboratory Control Standard Duplicate

Quality Control Summary

Method Blank

Miscellaneous Wet Chemistry

SDG: PNV88 Matrix: WATER

				Matrix. VVATER			_
	Analysis						
Analyte	Date	Method	Batch Number	Blank Results	Units	MDL	LOQ
Hexavalent	1/21/2006	co	06021027603	ND	mg/L	0.005	0.02
Chromium							
ТРН	1/27/2006	IR	06027112601	ND	mg/L	0.50	1.3
		L		I	1	I	

Comments: The blank is acceptable when the result is less than the limit of quatitation.

ABBREVIATION KEY

CO = Colorimetric IR = Infrared Spectrophotometry

G = Gravimetric LOQ = Limit of Quantitation

MTR = Meter NA = Not Applicable

OD = Oven Dried U = Background

OD = Oven Dried U = Background
TI = Titration M = Matrix Spike Duplicate

ND = Not Detected R = Matrix Spike

J = Estimated Value D = Duplicate

HS = High Spike PDS = Post Digestion Spike (P)

= Out of Specification LS = Low Spike

MDL = Method Detection Limit

Quality Control Summary Duplicate Analysis

Miscellaneous Wet Chemistry

SDG: PNV88 Matrix: SOIL

Sample Number Code Analyte Date Date ME Batch # Result Result Code Co								Matrix: SOII	<u> </u>		
Number Code Analyte Date ME Batch # Result Result Units (%) Limits 9 4692566 6020- ORP 1/30/2006 MTR 06030755201A 124 127 mV 3 46	Sample	Sample		Analysis			Sample	Duplicate		RPD	Control
4692566 6020- ORP 1/30/2006 MTR 06030755201A 124 127 mV 3 46	Number	Code	Analyte	Date	ME	Batch #	Result	Result	Units	(%)	Limits %
1 102200 0020 01111											46
4692565 6005- pH 1/24/2006 MTR 06024144101A 7.47 7.49 NA 0 1	4032300	0020	J.(i		''''``	11300,0000	,				
	4692565	6005-	рН	1/24/2006	MTR	06024144101A	7.47	7.49	NA	0	1
	4032000		,								
				,							
	Î l			}							
											ļ
						-					
					1						
						•					
				1							
						;					
					1		1				
	1	1	•								
							L		<u> </u>		

Comments: If the background and/or the duplicate result was less than the limit of quantitation, the RPD is not required.

If the background and/or duplicate result is less than five times the limit of quantitation, the RPD is not considered applicable and is program deleted.

ABBREVIATION KEY

CO = Colorimetric

ND = Not Detected

TI = Titration

NA = Not Applicable

G = Gravimetric

OD = Oven Dried

ME = Method

J = Estimated Value < LOQ

MTR = Meter

= Out of Specification

IR = Infrared Spectrophotometry

D = Duplicate

Quality Control Summary

Laboratory Control Standard (LCS)

Laboratory Control Standard Duplicate (LCSD)

Miscellaneous Wet Chemistry

SDG: PNV88

Matrix: SOIL

		T		True		Matrix: S						% RPD
		Analysis		LCS/LCSD	LCS	LCSD					% RPD	Acceptance
Batch Number	Analyte	Date	ME	Value	Results	Results	Units	Accepta	ance	Range	Results	=</th
06030755201	ORP	1/30/2006	MTR	263	279	NA	mV	248	-	279	NA	NA
		1/30/2006		86	112	NA	mV	76.1	-	112.9	NA	NA
06024144101	pΗ	1/24/2006	MTR	6.87	6.88	NA	NA	6.82	-	6.93	NA	NA
											:	
							:					
											:	

ABBREVIATION KEY

CO = Colorimetric

* = Out of Specification

DI = Distillation

J = Estimated Value < LOQ

G = Gravimetric

NA = Not Applicable

MTR = Meter

ME = Method

OD = Oven Dried

ND = Not Detected

TI = Titration

IR = Infrared Spectrophotometry

Quality Control Summary Laboratory Control Standard (LCS) Laboratory Control Standard Duplicate (LCSD) Miscellaneous Wet Chemistry

SDG: PNV88
Matrix: WATER

						Matrix: V	VATER				
Batch Number	Analyte	Analysis Date	ME	True LCS/LCSD Value	LCS Results	LCSD Results	Units	Acceptanc	e Range	% RPD Results	% RPD Acceptance =</th
06021027603	Hexavalent Chromium	1/21/2006	со	0.2	0.203	NA	mg/L	0.18 -	0.22	NA	NA
06025755201	ORP		MTR MTR		272 102	NA NA	mV mV	248 <i>-</i> 76.1 -		NA NA	NA NA
06021020001	рН	1/21/2006	MTR	6.87	6.89	NA	NA	6.82 -	6.93	NA	NA
06027112601	TPH	1/27/2006	IR	12	9.7655	10.167	mg/L	6.5 -	13.6	4	14
						<u>.</u>					
										 - 	
				!							

ABBREVIATION KEY

CO = Colorimetric

* = Out of Specification

DI = Distillation

J = Estimated Value < LOQ

G = Gravimetric

NA = Not Applicable

MTR = Meter

ME = Method

OD = Oven Dried

ND = Not Detected

TI = Titration

IR = Infrared Spectrophotometry

Quality Control Summary
Initial Calibration
Miscellaneous Wet Chemistry
Total Petroleum Hydrocarbons
Instrument Identification: 10097
Calibration Date: 01/04/06

SDG: PNV88

Batch Number	Units Conc. mg/L	Blank 0.0000	STD 1 1.0000	STD 2 5.0000	STD 3 10.0000	STD 4 20.0000	STD 5 30.0000	STD 6 40.0000	Correlation Coefficient
06027112601A	ABS	0.000	0.015	0.094	0.196	0.372	0.570	0.759	1.000
						}			
									_ `

Analysis Date: 01/27/06

Units mg/L

Critto ingre				
	Reference		%	
Parameter	Concentration	Result	Recovery	Acceptance Range
ICV	5.0	4.667	93	4.475 - 5.52495
ccv	20.0	19.630	98	17.9 - 22.0998
		!		
		i		
	<u> </u>			
	[
1	1	I	ı	

ABBREVIATION KEY

ICV = Initial Calibration Verification

CCV = Conti. Calibration Verification

Lancaster Laboratories Method Detection Limits Department 29 - Water Quality

ANALYSIS	LL#	MDL	ANALYSIS	LL#	MDL
Acidity	476	2 mg/l as CaCO3	Oil and Grease	231	2.5 mg/l
Acidity	4530	3 mg/l as CaCO3	Oil and Grease	236	680 mg/kg
Alkalinity to pH 4.5	202	0.46 mg/l as CaCO3	Oil and Grease	429	0.40 mg/l
Ammonia Nitrogen	573	17 mg/kg	Oil and Grease	2446	334 mg/kg
Ammonia Nitrogen	221	0.2 mg/l	Orthophosphate	226	0.01 mg/l
Ammonia Nitrogen	6914	0.03 mg/l			
BOD	235	0.80 mg/l	Petroleum Hydrocarbons	1126, 8140	0.50 mg/l
Bulk Density	6569	0.08 g/cc	Petroleum Hydrocarbons	1554	0.50 mg/l
Carbonaceous BOD	1364	0.80 mg/l	Petroleum Hydrocarbons	1562	23 mg/kg
Chemical Oxygen Demand	1553	2.6 mg/l	Petroleum Hydrocarbons	1663	21 mg/kg
Chemical Oxygen Demand	234	300 mg/kg			
Chemical Oxygen Demand	4001	12.8 mg/l			
Chloride	1124	0.4 mg/l	Silica	559	0.1 mg/I
Chlorine Residual	240	0.04 mg/l	Silica (low-level)	6628	0.01 mg/l
Dissolved Oxygen	428	0.09 mg/l	Soluble BOD	541	0.80 mg/l
			Specific Conductance	280	1.7 umhos/cm
Ferrous Iron	8344	0.008 mg/l	Specific Gravity	1443	0.005
Fluoride	263	0.03 mg/l	Sulfate	1125	1.5 mg/l
Fluoride Distillation	2200	0.03 mg/l	Sulfate, 10mg/1 CCV (non-PW)	1125	8.28 – 9.90 mg/l
Hexane Extractable Materials (Silica-Gel Treated)	8078, 612	1.45 mg/l			
Hexane Extractable Materials	8079	1.4 mg/l	Sulfide	230	0.022 mg/l
HEM Oil and Grease	2562	225 mg/kg	Sulfide, Acid Volatile	1630	0.39 micromoles/g
Hexavalent Chromium	276	0.005 mg/l	Sulfide Titration	1333	0.53 mg/l
Hexavalent Chromium	425	0.50 mg/kg	Sulfide Titration	1122	27 mg/kg
Hexavalent Chromium	1446	0.0007 mg/l			
Hexavalent Chromium	4858	0.65 mg/kg			
Hexavalent Chromium	4859	0.004 mg/l	Sulfite	229	1.2 mg/l
			Total Dissolved Solids	212, 6649	9.7 mg/l
M.B.A.S.	225	0.035 mg/l	Total Hardness	216	0.49 mg/l as CaCO3
Moisture	6866	0.5 %	Total Solids	203	6.3 mg/l
			Total Suspended Solids	206	3.0 mg/l
			Turbidity	279	0.09 NTU

Revised 2/8/06

Raw Data

Raw Data Logbook Oxidation Reduction Potential

· 1821/7552

Std Ref (B	Book/pg):	P82102	2Fq_	,	Analysis #:	7552	1821	
Potch #	016 03 0	নিহার	FIGURE		-			

Batc	h# 0603	10 75	5 2011	 				. , , , , , , , , , , , , , , , , , , ,
	Date: 1-30-06 Time: 0830		Inst. #: 16S Upld Date:	1-30-lle	rectox solv	z 476.2	•	•
	Analyst: must li	57.6	Upld by: Y	Mrs 10st	LOQ = 10.0			
	Sample	mV Rdg	mV Rdg	mV Rdg	Calc.	Batch		
	Number 182	Trial 1	Trial 2	Average	Value (mV) 279 478 112 311	Letter	QC#	Comments
1	LCS 4 (263) (16)	1518 S	279.7	278.95	279 478		1 ,	(JOL90) 1031.
2_	LCS7 (86)(255	112.7	117	112.1	112 311"		` ک	(1309) 109 1/
3	4697565	124,4	1540	124.2	124			
4	46925660	120.7	127.2	123,95	124/323),	-	
5] D	126.4	127.8	127.1	127/323	R1)	1	1000-3 1521)- REA
6	4692567	115.0	121.7	118.35	118		_	<u> </u>
7	JUS2549	121.3	119.0	120.15	120		-	<u> </u>
8	Polespayu	115.4	116.5	115.8	116			
တ	41e92570	117.9	151.9	197	120		1	<u> </u>
10	4697871	127.4	124.2	1258	126		1	
11	4692572	130.8	129.5	130.15	130		,	
12	468718O	96.0	los.s	100.75	-101 299.7S		1	(1821)
13	4687126 /s21	C	81.8	15. ملا	285.15		•	(1521)
14	رد ب ر (کونج)		275.9	275.95	276/475	·	1 *	(105%) 103/
15	CCV 7 (Bc)	0.511	110.9	111.45	111/310		7	(1278) WY.
16-				**	#30	3		
17				•	lΦt	1300	-	
18								
19					-	, , , , , , , , , , , , , , , , , , ,	45	
20				4	7.7	The state of	3.5	
21					a garage			
22								
23				2 3x **-: x* #		egis is	-	
24	<u> </u>		:					<u> </u>
25_			* *	.,				
<u>26</u>	11/2	4-1729e41	Bound Exic					
27	1 TO	强压性		- of -				
28		- 3-			-	-		
<u>20</u>		tinger where and	mg. «Car	,				
307		The state of the s					•	3199

B

P

er.

目

F

B

H

Ħ

H

RAW DATA LOGBOOK SOLID pH (CLP) ANALYSIS #1441

Batch No. 0 6 0 2 u	144 101 A	
Init./Emp. #: \(\frac{\int}{239} \) Date:	1.24.06 LOQ = 0.01	
pH Meter ID #: 73762 6166	Balance ID #: <u>29/0</u>	,
pH Meter ID #: (166) Soln. C (pH = 6.87) Std. Ref. (Book/pg.):	060689p70B	
Time: 1835	·	

Sample Number	Sample Wt. (g)	Dl H₂O Vol. (mL)	pH Meter Reading	Batch Letter	Sow oumou.3 Comments
Blank	50	50	7.06	A	(22.3
BLank Lcs 47 8	06 —		6 88		13.4 Solac
46925650	50	50	7.47		223 1 503 02A
4692565D		}	7.49		122.1 RED 1
4692566			7.48		22.1
4692567			7.50		22.0
4692568			7.57		223
4692569	,		7.75		22.1
4692570			7-53		22.2
4692571			7.52		22.1
4692572	<u> </u>	V	7.49		22.1 ×
CCV	-	~	6.90		16.4 100%
	•				
					8288
					企业证
<u> </u>		7		L	<u> </u>

Water Quality

Standard Curve For: Crth Analysis #: 274, 425, 4859

Inst. ID: 9322 Slope: ,688920

Std. Ref. (Book/Pg.): 60, 689 p72 Y-Intercept: 604367

Standard mg/L	mL of 5 mg/L	ph	Abs		Comments
.00	0	181	1000		
-01	0.2	190	7007		
'05	1	187	1036		
10	۲	184	,071		
-20	4	185	,145		
٠50	10	175	360		
1-60	20	198	713		
1.25	25	176	.845		

LANCASTER LABORATORIES

HEXAVALENT CHROMIUM

274,425, 4859 CURVE BX/237

ID: 1 0.000 A .00
ID: 1 0.007 A .01
ID: 1 0.036 A .05
ID: 1 0.071 A .10
ID: 1 0.145 A .20
ID: 1 0.360 A .50
ID: 1 0.713 A 1.0

ID: 1 0.845 A .. w

1-21-06

Lancaster Laboratories 2425 New Holland Pike • Lancaster PA 17601

Raw Data Logbook

Hexavalent Chromium (Waters)

Colorimetric Analysis #0276

Curve Name: 226 1-21-06 920

Batch No. | 0 | 6 | Init./Emp. #:

6034

Automatic Pipette #:

806

Std. Ref. (Book/Pg.); 60,459

9322 Inst. #:

ŀ	1	-											
		<u> </u>		_		Absorbanc	Absorbance at 540 nm	_					
Smpl. Vol. (mL) D.F pH E			Sample Bl. pH	Ti	Sample	Sample Blank	Reagent Blank	Corr. Value	Calc. Value	00	Matrix		
182	- 8	H	ſ	╅—		1	2) 2	7-(B-A)	(mg/L)	(mg/L)	Type	Comments	
45 1 178	1 178		í		hh!	,	3	Can	a. (1)	70)	t .		V.
<u> </u>	<u> </u>	<u> </u>	htt		180.	500		57.	.×03	+		of Smel	
H81 1 SH			170		(50)	100		050	1037	+	3	1836	
861 1 001			65		50.	100		077	1		1	10.0. Spr. 2my	(6,0)
100 1 192			191		166	000-		191	12.54 (4)	+			OF THE PERSON NAMED IN COLUMN TO PERSON NAME
45 1 34			182		īā	109		0.89		†- -		of smy	7
661 1 Sh			194		100	íð.		3	2 3	+	+	1430 #3micha 124 ac	124 01
181 1 54			196		100;	200	-	9	2 2	+	+	424.	
45 1 181			~ ~		100	8	-	33 3	2 2	+	-	1800	
11 11 24			180		000.	21%)		3		+	1	1555	
461 1 24	114		172		000	3 %		3	2 2		1	D.p. 2.	
45 1 180	18 0		,	>	,408	1	 >	003	2 D	+	*		(A.4)
-	\ 	1						\dagger	5	+		4 12ml of Smal	
		┦							-		 		

OF ROllution Factor

1118.02

OH, SEMAN 355FB714 A.S. F.B.A.K Shirt Control of the 199. 3.00 Shape Coppe of 78/2/ South the state of , COO. Moderate State of Sta Konto trono THE TOTAL PROPERTY OF THE PARTY The contract of the contract o Oligo Color SHIHOLIHOGAT HILSONAT WALKANINO HAS

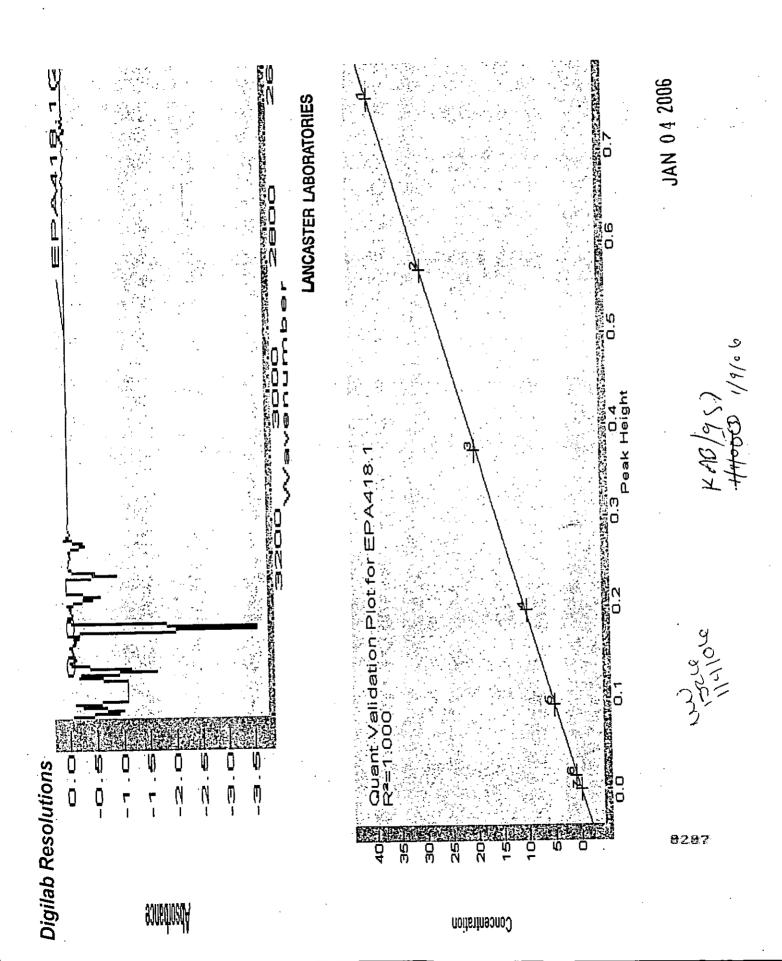
Raw Data Logbook Oxidation Reduction Potential

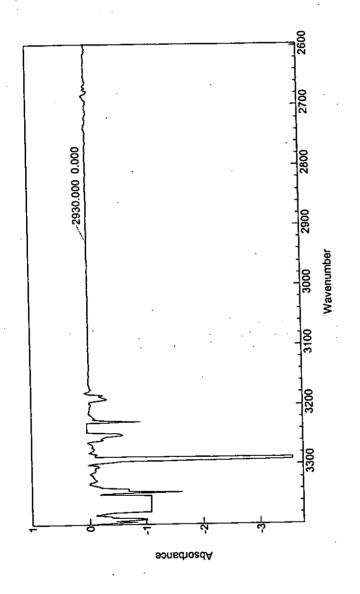
1821/7552

Std Ref (E	Book/pg):	100108c	1 p 75		Analysis #:	7852	
Ratch #	06025	755	2010				

[·	Date: 1-25-0-		Inst. #: 105	3	redox soln=	ีนา ๆ	l .	
	Time: 1/30		Upld Date:		L 230.30#15			
	Analyst: mulla	ملا	Upld by: m		LOQ = 10.0			
		Kero 1-25-co						
	Sample	mV Rdg	mV Rdg	mV Rdg	Calc.	Batch		
<u> </u>	Number	Trial 1	Trial 2	Average	Value (mV)	Letter	QC#	Comments 103%
1	१८८ म मिल्ट्री	273.2	271.7	272.2	212			
2	LCS 7 (86)	101.5	1017	101.6	102		ਕ ।	(11890)
3	4690048	112.7		115.5	112	A		
4	4690649	112.1 107.5 116.	115.5	IIS.7S	116		,	
5	4k9 0650	144.6	199.1	144.35	144			,
6	1640621	142.1	145.9	<u>ાંધલ</u>	144			
7	469065Z	149.2	148.6	148.6	149			
8	4690653	1347	135.9	136.3	136			
9	YUAOUSY	152.1	1539	153	183			-
10	46906S	146.7	147.4	147.05	147			
11	4691570	1324	122.9	127.65	158	 	-	-
12	4691571 U	45.6	38.1	41.85	42	BA		mu 102- 125a.
13	4691576 D	35.5	30.3	32 9	33	7-1		RDD=24 (5)
14	4691577	1969	197.6	19725	197	В	123 -	
15	4W1518	0. rr	77.6	71.3	77		ion!	25-64
16	4691579	99.0	99.8	99.4	99			
17	46915804	35.8	30.5	33	33			
18	4691585D	27.0	24.2	2510	26		•	600=s
19	4691586	37.9	40.6	39.25	39			
20_	4693387	1027	106.0	104.35	104	1		
21	FR. 1 (513)	273.0	212.7	27285	273		1 ^	(10490)
22	(80)	1037	103.0	103.35	103		۲ '	(20%)
23	#3000/10261-	5-0%						
24								
25								<u> </u>
26								
27								
28					<u> </u>			
29			4,14	Y				
30				N ₁				9285

Verified by:	14AB	957		Date:	1	30	106	
			2674.01 08/07/01	_	1	/	!	

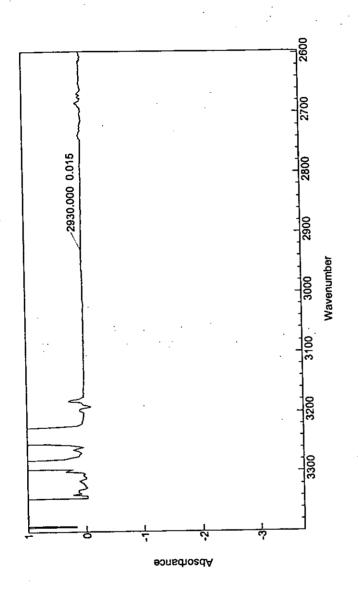



Raw Data Logbook pH (Analysis #0200)

soln C Ref. (Book/pg) <u>ο ω ο ω 89 ρ 70</u>

06021 0 2 0 OOIA Batch #

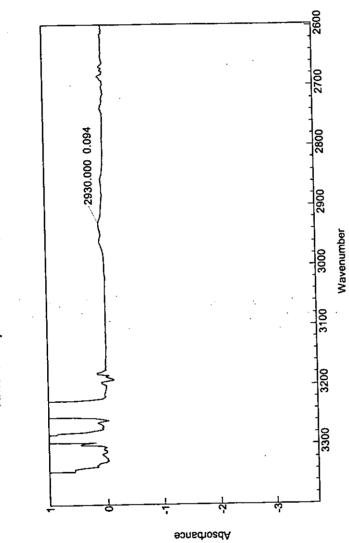
	LOQ= 0.01 Date: 2 06 Time: 2300 Analyst: NAR1223	Upld	!: <i>25</i> 26 Date #: ۱ by: ม <i>เ</i> น	121/06			
	Sample Number	Reading	Temp (°C)	Std. True Value	QC#	Batch letter	Comments
1	LLS	89. يا	9.5	6.87	2_	A	(solve (100%)
2	4693387	8.88	12.4			1	АРОВ
3	4693387	8.87	12.4				∤ ↓
4	469348/	11.09	12.7				OIZ.A
5	4693481	11.08	12.7				<u> </u>
6	4693539	7.90	11.9				005R
7	4693539	7.90	11.9			<u> </u>	<u> </u>
8	4693540 U	7.80	10.7				
9	4693540 U	7.80	10.7				<u> </u>
10	4693540 D	7.80	10.8				/RPD=0
.11	4693540 D	7.80	10.8				Ψ.
12	ccv	6.90	12.1	:			1007.
13	4693542	7.45	11.7				0°5B
14	4693542	7.45	11.7				<i>t</i>
15	4693543	7.34	11.6				
16	4643543	7.35	11.6				<i>l</i>
17	4693545	7,47	12.4				
18	4693545	7.47	12.4				<i>Y</i>
19	4693546	7.79	11.6				
20	4613546	7.79	11.6				/
21	4693548	प.31	0.11		_		
22	4693548	7.32	11.0				X 1
23	ccv	6.90	13.9	·		ΨV	100%
24	4693549 0	7.43	12.3			B	005B
25	4693549 0	7.44	12.4				<i>k</i>
26	4693549 D	7.44	12.4				
27	4693549 D	7.44	12.4				RPD=0
28	4693551	7.80	11.5				8286
29	4693551	7.81	11.5				<i>Y</i>
30	4693552	7,58	12.1			d	│
	ified by:	M141	1124		_Date:	1/6	4/06



LANCASTER LABORATORIES

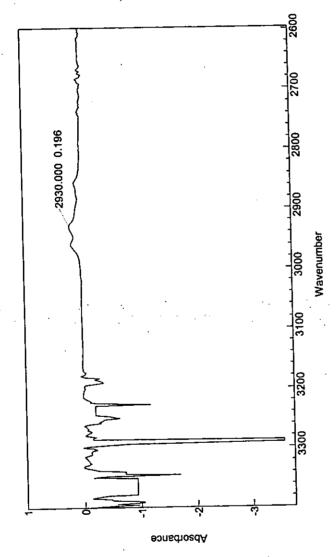
JAN 04 2006

Page7



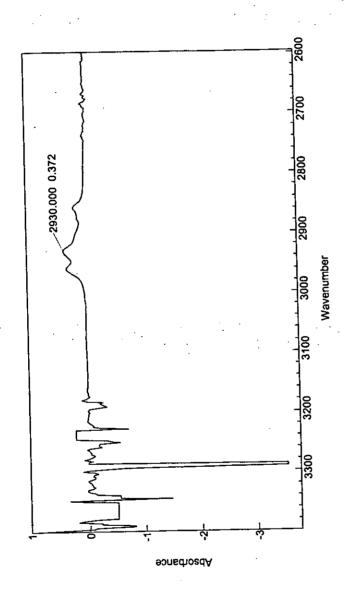
LANCASTER LABORATORIES

JAN 04 2006


Page3

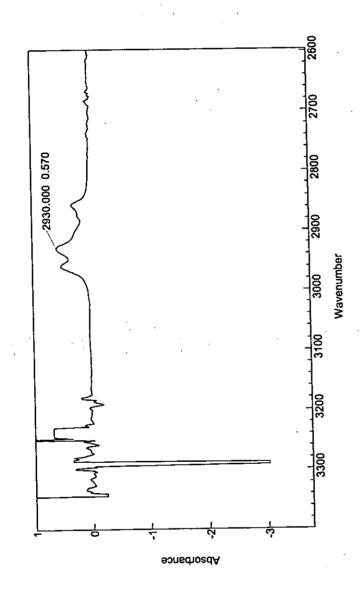
LANCASTER LABORATORIES

JAN 04 2006

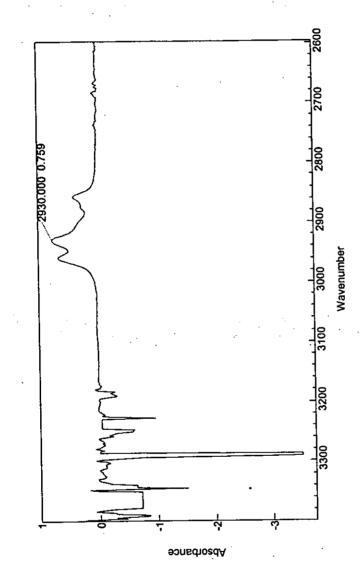


I ANTO SETER LABORATORIES

JAN 04 2006


40/6/10 6 1/9/9

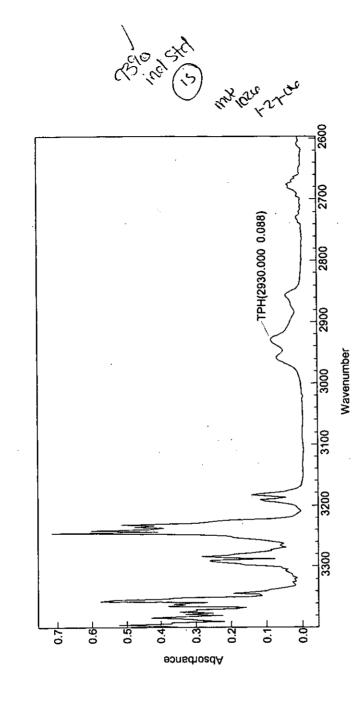
LANCASTER LABORATORIES


JAN 04 2006

Time Stamp = Wednesday, January 04, 2006 09:47:29

LANCASTER LABORATORIES

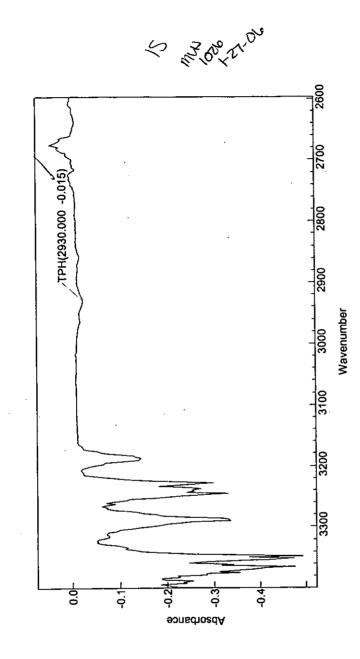
Page2


LANCASTER LABORATORIES

JAN 04 2006

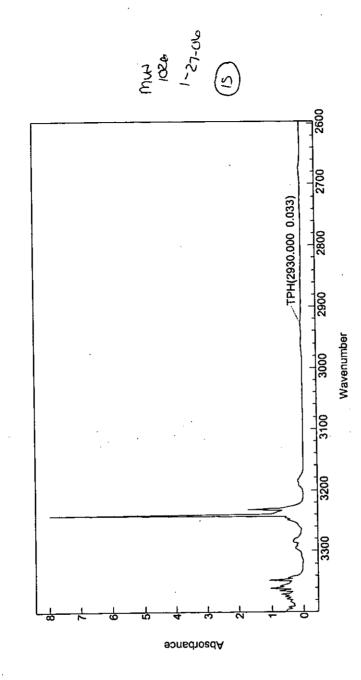
Pagel

Sample Code


mg/L

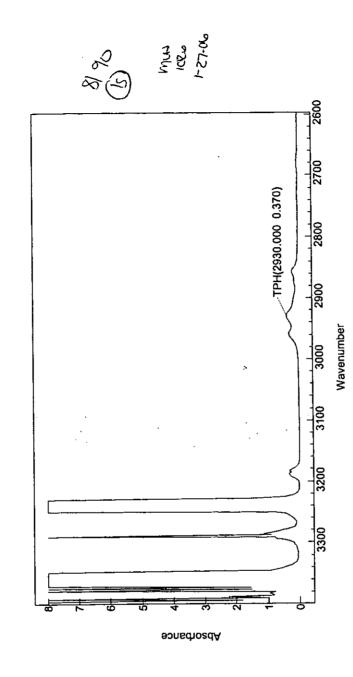
mallat adlite

TPH concentration =


Time Stamp = Friday, January 27, 2006 12:44:58

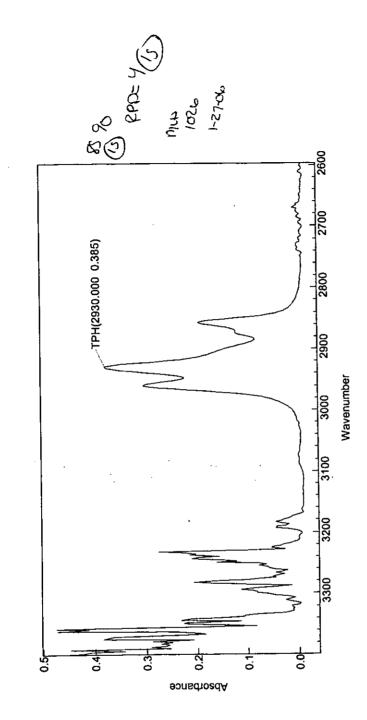
miallol by

Sample Code


TPH concentration =

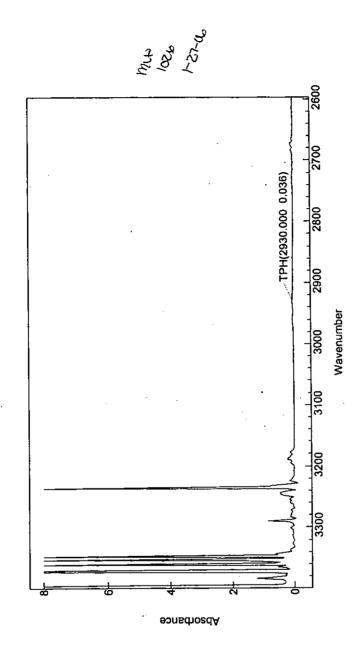
aglole Halm

Time Stamp = Friday, January 27, 2006 12:49:26


TPH concentration =

aoliole min

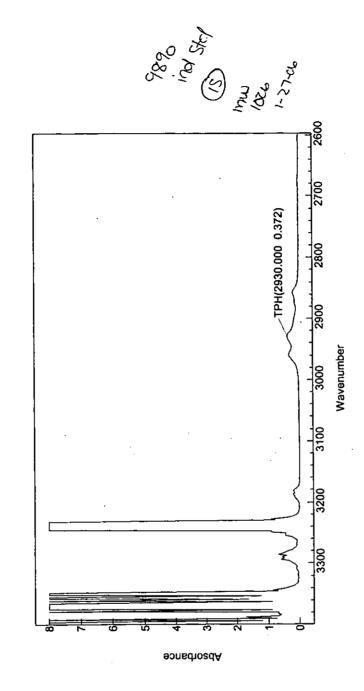
Sample Code


TPH concentration =

poliote m

Page1

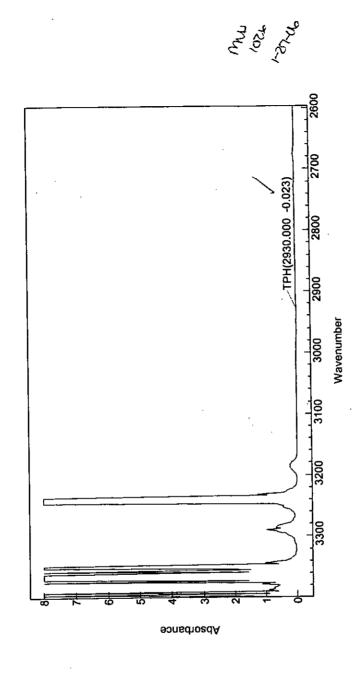
mg/L


adjole w

Sample Code

mg/L

Time Stamp = Friday, January 27, 2006 13:51:36


TPH concentration =

milliport police

Sample Code

Time Stamp = Friday, January 27, 2006 13:54:41

mollow mollow

Extraction/Distillation/Digestion Logs

A A A A A A A A A A A A A A A A A A A	•	er Laboratories	nd Pike • Lancaster, PA 17601
		×	2425 New Holk

Pet Ana

* \$ 5.00

ij

1

1

]

3

I

2

.

1

Kaw Data Extraction Prep Logbook	n Prep Logbook	Prep Date 1-27-3
Petroleum Hydrocarbons in Water	bons in Water	Time 0730
Analysis #1126/8124		lnitial/emp# ত্রতা,ন্সত
	Batch No. 0 6 52 7	1 2 6 0 1 A 1 1 1 1 1 1 1 1
Std. Ref. (Book/Page):	고용, Analysis #: Analysis #:	1726 Freon Lot #: Aparal 1-26 of IRCurve: 1-4-04
D.F. = Dilution Factor)	

43mlof 4 worm (1) white emy Clocky Comments black enul Clouch الدروسيا S S Olo B 0.1575 N.D. /ODA 11.2 D. 9304 N.V. 10 5344 0. WILD 0.3183 NO. KO'N 8880'O 1.018 820,0 0.3979 N.D. 0.2532 N.D. 0.52 6.4372 A.D. O. 1898 NO. Z.D. 10.53 H31 120 Results (mg/L) 0.1783 97 Juss 10:[6] LOQ (mg/L) $\tilde{\omega}$ 30 €. Final D.F. Q S S I.R. D.F. S S Final Vol of Extract (mL) 9 Harry love 1-21-co Prep D.F. R Sampl Vol. (mL) 830 870 840 2000 Psc 500 920 S3C) Q % Sample Number 028969h 98989 785982 75CaPa127 4694936 489 SYSZ 469639 404BB 4893587 469543/ 4694932 4694924 Blank (SD 3 Init./ Emp. 300 13.8 13.8 Et Time 733 アクア 1332 1336 13-15 134% 1402 1338 1354 134 Moo والإي 727 125 8224 Analysis Date 1- 31-06

2)01106 Date: M(6)1134 Verified by:

1201.01

Moisture Data

CLIENT: Tierra Solutions, Inc.

SDG: PNV88

SAMPLE NUMBERS:

Sample #	Sample Code
4692565	6005-
4692566	6020-
4692567	6014-
4692568	6007-
4692569	6024-
4692570	6028-
4692571	6008-
4692572	6010-

Laboratory Compliance Quality Control

LCSD LCS LCS/LCSD

%REC **Analysis Name** %REC Limits <u>RPD</u> **RPD Max**

Batch number: 06024820003A

Sample number(s): 4692565-4692572

Moisture

100 99-101

Sample Matrix Quality Control

BKG DUP

Conc RPD **RPD Max Analysis Name** Conc

Batch number: 06024820003A

Sample number(s): 4692565-4692572

Moisture

12.0 13.2 9

* - Outside of specification

(1) - The result for one or both determinations was less than five times the LOQ.

Moisture Data Report

Batch #: 06024820003

Daton #:	~~~~~							
				Sample			Analysis	Verified
Sample ID	Batch ID	Analysis#	Tare Wt	<u>Wt</u>	Dry Wt	<u>%Moisture</u>	Date (Emp#)	Date (Emp#)
LCS 89.5% Std.			1.1321	5.0073	1.6751	89.16	1/24/06 (1201/SWF) 1/25/06 (0236/CW)
4692565BKG	Α	01353	1.1335	6.4430	6.8002	12.05	1/24/06 (1201/SWF) 1/25/06 (0236/CW)
4692565DUP	Α	01353	1.1300	6.3661	6.6540	13.23	1/24/06 (1201/SWF) 1/25/06 (0236/CW)
4692566	Α	01353	1.1313	8.3771	8.3352	14.00	1/24/06 (1201/SWF) 1/25/06 (0236/CW)
4692567	Α	01353	1.1229	9.5116	9.4448	12.51	1/24/06 (1201/SWF) 1/25/06 (0236/CW)
4692568	Α	01353	1.1561	8.3266	8.5328	11.41	1/24/06 (1201/SWF) 1/25/06 (0236/CW)
4692569	Α	01353	1.1412	5.4814	5.8702	13.73	1/24/06 (1201/SWF) 1/25/06 (0236/CW)
4692570	Α	01353	1.1286	9.5148	9.3824	13.25	1/24/06 (1201/SWF) 1/25/06 (0236/CW)
4692571	Α	01353	1.1297	8.6115	8.5543	13.78	1/24/06 (1201/SWF) 1/25/06 (0236/CW)
4692572	A	01353	1.1351	8.5427	8.5507	13.19	1/24/06 (1201/SWF) 1/25/06 (0236/CW)

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Type IV Organics Data Package for Tierra Solutions, Inc.

SDG# PNV88

Project: Painesville, OH
Soil and Water Samples
Collected on 01/19/06-01/20/06
Sample No. 4692565-4692572, 4693387, 4693470

PA Cert. # 36-037 NY Cert. # 10670 NJ Cert. # PA011 NC Cert. # 521

Prepared by Jessica	Baron
Reviewed by	Kay 10 Day
Date	2/17/01

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Table of Contents for SDG# PNV88

1.	Sample Reference List 1
2.	Methodology Summary/Reference 2
3.	Case Narrative-Conformance/Nonconformance Summary 4
4.	Chain-of-Custody Record 21
5.	Volatiles by GC/MS Data 36
	a. QC Summary 37
	b. Sample Data 50
	c. Standards Data294
	d. Raw QC Data 356
	e. Preparation Logs 413
6.	Semivolatiles by GC/MS Data 424
	a. QC Summary 425
	b. Sample Data 442
	c. Standards Data926
	d. Raw QC Data 982
	e. Extraction/Distillation/Digestion Logs 1074
7.	Pesticides Data 1077
	a. QC Summary 1078
	b. Sample Data 1087
	c. Standards Data 1206
	d. Raw QC Data 1378
	e. Extraction/Distillation/Digestion Logs 1468

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Reference List for SDG Number PNV88 with a Data Package Type of IV-O

06101 - Tierra Solutions, Inc.

Project: Painesville, OH

Lab	Lab	
Sample	Sample	
<u>Number</u>	<u>Code</u>	Client Sample Description
4692565	6005-	TIE023:6005:S010030 Soil Sample
4692566	6020-	TIE023:6020:S010030 Soil Sample
4692567	6014-	TIE023:6014:S010030 Soil Sample
4692568	6007-	TIE023:6007:S010030 Soil Sample
4692569	6024-	TIE023:6024:S010030 Soil Sample
4692570	6028-	TIE023:6028:S010050 Soil Sample
4692571	6008-	TIE023:6008:S005020 Soil Sample
4692572	6010-	TIE023:6010:S005025 Soil Sample
4693387	EB1J-	TIE023:EB1:W012006 Grab Water Sample
4693470	TBPNV	Trip Blank Water Sample

++++++

Where quality is a science.

METHODOLOGY SUMMARY/REFERENCE

7157 TCL Volatiles OLM03.2 (soils)

The sample or extract of the sample is analyzed by purge and trap GC/MS.

Reference: USEPA Contract Laboratory Program, Statement of Work for Organic Analysis, OLM03.2

7156 TCL Volatiles OLM03.2 (water)

The sample is purged and the volatile compounds are collected on a sorbent trap that is subsequently desorbed onto the GC/MS system for chromatographic and mass spectral analysis.

Reference: USEPA Contract Laboratory Program, Statement of Work for Organic Analysis, OLM03.2

4562 CLP Pesticides/PCB's in Solids

The sample is solvent extracted and cleaned up using GPC and a Florisil cartridge. The resulting extract is then quantitatively analyzed by gas chromatography with an electron capture detector.

Reference: USEPA Contract Laboratory Program, Statement of Work for Organic Analysis, Multi Media, Multi Concentration, Number OLM03.2

4533 CLP Pesticides/PCB's in Water

The sample is solvent extracted and cleaned up using a Florisil cartridge. The resulting extract is quantitatively analyzed by gas chromatography with an electron capture detector.

Reference: USEPA Contract Laboratory Program, Statement of Work for Organic Analysis, Multi Media, Multi Concentration, Number OLM01.8 or OLM03.2

4372 TCL Semivolatiles GC/MS

The sample is solvent extracted and analyzed by GC/MS.

Reference: USEPA Contract Laboratory Program, Statement of

Work for Organic Analysis, OLM03.2

4438 TCL Semivolatiles GC/MS (3.2 SOW)

The sample is solvent extracted and analyzed by GC/MS.

Reference: USEPA Contract Laboratory Program, Statement of

Work for Organic Analysis, OLM03.2

3342 CLP Water Extraction

The sample is solvent extracted, dried, and concentrated. Florisil cleanup is used to minimize interferences.

Reference: USEPA Contract Laboratory Program, Statement of

Work for Organic Analysis, Multi Media,

Multi Concentration, Number OLM01.8 or OLM03.2

4185 CLP Soil Extraction

The sample is solvent extracted using sonic probe. The extract is dried and concentrated. GPC and Florisil cleanups are used to minimize interferences.

Reference: USEPA Contract Laboratory Program, Statement of

Work for Organic Analysis, Multi Media,

Multi Concentration, Number OLM01.8 or OLM03.2

Case Narrative Conformance/Nonconformance Summary

CASE NARRATIVE

Client: Tierra Solutions, Inc.

SDG#: PNV88

LANCASTER LABORATORIES **VOLATILES BY GC/MS**

SAMPLE NUMBERS:

	Matrix				
LL #'s	Sample Code	<u>Soil</u>	<u>Water</u>	<u>Comments</u>	
4692565	6005-	Χ		Unspiked	
4692565	6005-MS	X		Matrix Spike	
4692566	6020-	Χ			
4692567	6014-	Χ			
4692568	6007-	Х			
4692569	6024-	X			
4692570	6028-	Χ			
4692571	6008-	X			
4692572	6010-	Х			
4693387	EB1J-		X	Client Blank	
4693470	TBPNV		X	Client Blank	
LABORATOR'	Y SUBMITTED QC:				

VBLKR37	VBLKR37	Х		Method Blank
VBLKR34	VBLKR34		Χ	Method Blank
LCSR37	LCSR37	Χ		Lab Control Sample
LCDR37	LCDR37	Χ		Lab Control Sample Dup

SAMPLE PREPARATION:

The soil samples were collected in the field using EnCore™ samplers. Once submitted to Lancaster Laboratories, the samples were transferred into the appropriate pre-weighed containers and were re-weighed to determine the weight of the sample. Since an approximate amount of sample is collected in the field, the dilution factors may vary from sample to sample.

经经验

Page 2 of 2

An effervescence check is performed on the samples requiring low level analyses. If the sample effervesces, the sample is transferred into a 40ml vial that already contains 5ml of DI water and a stir bar. The sample in DI water is frozen and later thawed prior to analysis. If the sample does not effervesce, the sample is transferred into a 40ml vial that already contains 5ml of a sodium bisulfate solution and a stir bar.

The weights for several samples were found to be outside the SW-846 Method 5035 requirement of 4.5g to 5.5g (EnCore™ sampler) when these samples were re-weighed at the laboratory. Please see the Vial Preparation sheets following the QC Raw Data section for more information.

No problems were encountered during the sample preparation for the VOA fraction.

ANALYSIS:

The method used for analysis was EPA CLP OLM03.2 SOW.

No problems were encountered during the analysis of these samples.

QUALITY CONTROL and NONCONFORMANCE SUMMARY:

Only client requested compounds are addressed in this narrative.

Sufficient sample was not available to perform an MSD for this SDG. However, an MS was performed. In addition, an LCS/LCD was performed to demonstrate precision and accuracy at a batch level.

All QC was within specifications.

DATA INTERPRETATION:

At the time of data package assembly it was determined that the original GC/MS volatile laboratory internal chain of custody for samples 4692565-72 was not completely filled out. See the chain of custody form for further information.

No further interpretation is necessary for the data submitted.

Case Narrative reviewed and approved by:

hn F. Morton, M.S., GC/MS Volatiles

异异环氏

CASE NARRATIVE

Client: Tierra Solutions, Inc. SDG #: PNV88

LANCASTER LABORATORIES SEMIVOLATILES BY GC/MS

SAMPLE NUMBER(S):

	•	Ma	trix	•
<u>LL #'s</u>	Sample Code	<u>Soil</u>	<u>Water</u>	Comments
4692565	6005-	Χ		Unspiked
4692565	6005-MS	Х		Matrix Spike
4692565	6005-MSD	Х		Matrix Spike Dup
4692566	6020-	X		
4692567	6014-	Х		
4692568	6007-	X		
4692569	6024-	Х		
4692570	6028-	Х		
4692571	6008-	X		
4692572	6010-	Х		
4693387	EB1J-		X	Client Blank
LABORATORY SUI	BMITTED QC:			
SBLKLB021	SBLKLB0218	Χ		Method Blank
SBLKWC025	SBLKWC0258		X	Method Blank
021LBLCS	021LBLCS8	Χ		Lab Control Sample
025WCLCS	025WCLCS8		X	Lab Control Sample
025WCLCSD	025WCLCSD8		X	Lab Control Sample Dup

SAMPLE PREPARATION:

No problems were encountered during the extraction of these samples.

ANALYSIS:

8687

Case Narrative (continued) SDG#: PNV88

The method used for analysis was EPA CLP OLM03.2 SOW.

Sufficient sample volume was not available to perform a MS/MSD for the analysis of EB1J-. Therefore, a LCS/LCSD was performed to demonstrate precision and accuracy at a batch level.

3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The 4-methylphenol value is a combination of results from both compounds.

No problems were encountered during the analysis of these samples.

QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

The recoveries of 4-nitrophenol were outside QC limits in 025WCLCS8 and 025WCLCSD8. The recovery of 2,4-dinitrotoluene was outside QC limits in 025WCLCS8.

All other QC was within specifications.

DATA INTERPRETATION:

Only non-conformances for client requested compounds are addressed in this case narrative.

The "X" flag on the form 1F indicates that the Tentatively Identified Compound could be an isomer of the given compound.

For the alkane series information refer to the attached forms.

No further interpretation is necessary for the data submitted.

Case Narrative (continued) SDG#: PNV88

Case Narrative Reviewed and Approved by:

Charles J. Neslund Manager, GC/MS Semivolatiles

EPA SAMPLE NO.

1 0 5	i
6005-	1
1	

_ ,	Name : Lancaster	Laboratories	Contract:	i
Lab	Name:Lancaster	•		SDG No.:
T _i ab	Code: LANCAS	Case No :	SAS No.:	

Lab Sample ID: 4692565

Matrix: (soil/water) SOIL

Lab File ID: hb062.d Sample wt/vol: 30 (g/mL) g

Date Received: 01/20/06 Level: (low/med) LOW

Date Extracted: 01/23/06 % Moisture: 12 Decanted: (Y/N)

Concentrated Extract Volume: 500 (uL) Date Analyzed: 02/06/06

Dilution Factor: 1 Injection Volume: 2 (uL)

Extraction: Sonc : Hq

GPC Cleanup: Y

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/Kg Number TICs found: 20

EPA SAMPLE NO.

					!	1
					6020-	
Lab	Name:	Lancaster	Laboratories_	Contract:		

Lab	Code:	LANCAS	Case No.:	SAS No.:	SDG No.:

Matrix: (soil/water) SOIL Lab Sample ID: 4692566

Sample wt/vol: 30 (g/mL) g Lab File ID: hb063.d

Level: (low/med) LOW Date Received: 01/20/06

% Moisture: 14 Decanted: (Y/N) Date Extracted: 01/23/06

Concentrated Extract Volume: 500 (uL) Date Analyzed: 02/07/06

Injection Volume: 2 (uL) Dilution Factor: 1

GPC Cleanup: Y pH: Extraction: Sonc

CONCENTRATION UNITS:

Number TICs found: 20 (ug/L or ug/Kg) ug/Kg

	l (]		
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
,	=======================================	•		:
1.	Unknown Alkane	18.913	460	J
2.	Unknown Alkane	20.676	580	J
3.	Unknown Alkane	21.677	440	J
4.	Unknown Alkane	22.342	610	J
5.	Unknown Alkane	23.900	540	J __
6.	Unknown Alkane	24.594	390	ļ J
7.	Unknown Alkane	25.380	810	J : _
8.	Unknown Alkane	26.712	360	ļ J
9.	Unknown Alkane	27.896	370	ļ J
10.	Unknown Alkane	28.971	300	J
11.	Unknown Alkane	29.958	320	J
12.	Unknown Alkane	30.886	430	J
13.	Unknown Alkane	31.745	440	J
14.	Unknown Alkane	32.612	650	J B
15.	Unknown Alkane	33.578	830	J
16.	Unknown Alkane	34.692	710	J
17.	Unknown Alkane	36.021	660	J
18.	Unknown Alkane	37.596	550	J
19.	Unknown Alkane	39.515	670	J
20.	Unknown Alkane	41.849	440	J
21		<u> </u>		ļ
22		l		ļ
23		l		<u> </u>
24		l		ļ
25		1		ļ
26		.l		l
27		l		
28		.l <u></u>		l
29		l		1
30		l		1
		l		

6014-

EPA SAMPLE NO.

Lab	Name:	Lancaster	Laboratories	Contract:	<u> </u>

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Matrix: (soil/water) SOIL Lab Sample ID: 4692567

Sample wt/vol: 30 (g/mL) g Lab File ID: hb064.d

Level: (low/med) LOW Date Received: 01/20/06

% Moisture: 12 Decanted: (Y/N) Date Extracted: 01/23/06

Concentrated Extract Volume: 500 (uL) Date Analyzed: 02/07/06

Injection Volume: 2 (uL) Dilution Factor: 1

GPC Cleanup: Y pH: Extraction: Sonc

CONCENTRATION UNITS:

Number TICs found: 20 (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q !======
	= =====================================	18.912	580	J
1.	Unknown Alkane	20.676	610	i j
2.	Unknown Alkane	21.677		ij j
3.	Unknown Alkane	22.342	650	i J
4.	Unknown Alkane	23.900	l 580	i J
5.	Unknown Alkane	24.595		i j
6.	Unknown Alkane	25.381	500	i J
7.	Unknown Alkane	25.420	500	IJ
8.	Unknown Alkane	26.713	410	ij i
9.	Unknown Alkane	26.792	!	J
10.	Unknown Alkane	27.897	i I 380	J
11.	Unknown Alkane	28.973	310	J
12.	Unknown Alkane	29.959	340	j j
13.	Unknown Alkane	30.887	i .	J
14.	Unknown Alkane	31.746	350	ij i
15.	Unknown Alkane	32.604	280	јјв ј
16.	Unknown Alkane	33.570	!	İј
17.	Unknown Alkane	34.693	270	jσ
18.	Unknown Alkane	36.022	240	J
19.	Unknown Alkane	39.506	300	J
20.	Unknown Alkane	1		
21				
22				
23		<u> </u>		
24			. 	
25		<u> </u>	.	-
26			·	-
27		¦	- -	
28			_	-
29	_	<u> </u>	-	-
30	_		- !	-

page 1 of 1

6007-

EPA SAMPLE NO.

	•		l l
Lab Name:	Lancaster Laboratories	Contract:	\

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) SOIL Lab Sample ID: 4692568

Sample wt/vol: 30 (g/mL) g Lab File ID: hb065.d

Level: (low/med) LOW Date Received: 01/20/06

% Moisture: 11 Decanted: (Y/N) Date Extracted: 01/23/06

Concentrated Extract Volume: 500 (uL) Date Analyzed: 02/07/06

Injection Volume: 2 (uL) Dilution Factor: 1

GPC Cleanup: Y pH: Extraction: Sonc

CONCENTRATION UNITS:

Number TICs found: 20 (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q ======	
:=========	=======================================	18.391	240	J	
1.	Unknown Alkane	18.916		J	
2.	Unknown Alkane	20.681		j j	
3.	Unknown Alkane	20.683	450	ij i	
4.	Unknown Alkane	22.339	670	ijJ	
5.	Unknown Alkane	23.898	530	i j	
6.	Unknown Alkane	24.593	. 330	J	
7.	Unknown Alkane	1	430	J	
8.	Unknown Alkane	25.379	1 400	j	
9.	Unknown Alkane	25.419	!	;	
10.	Unknown Alkane	26.712	!	l J	
11.	Unknown Alkane	26.792	!	l J	
12.	Unknown Alkane	27.897	1	J	
13.	Unknown Alkane	28.973	280	J	
14.	Unknown Alkane	29.960	310		
15.	Unknown Alkane	30.878	300	J	
16.	Unknown Alkane	31.747	290	J	i I
17.	Unknown Alkane	32.605	220	JB	
18.	Unknown Alkane	33.570	•	J	ļ
19.	Unknown Alkane	34.694	240	J	ļ
20.	Unknown Alkane	39.497	240	J	1
		i			ļ
21			.l	.	Į
22				<u> </u>	
23		- <u> </u>		.	ļ
24					
25		i		_	
26		_		.1]
27		- 1 			
28		-		1	80
29		-	-		1
30				- i	ĺ

page 1 of 1

6024-

EPA SAMPLE NO.

Matrix: (soil/water) SOIL Lab Sample ID: 4692569

Sample wt/vol: 30 (g/mL) g Lab File ID: hb066.d

Level: (low/med) LOW Date Received: 01/20/06

% Moisture: 14 Decanted: (Y/N) Date Extracted: 01/23/06

Concentrated Extract Volume: 500 (uL) Date Analyzed: 02/07/06

Injection Volume: 2 (uL) Dilution Factor: 1

GPC Cleanup: Y pH: Extraction: Sonc

CONCENTRATION UNITS:

Number TICs found: 20 (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =======	
		18.914	290	J	
1.	Unknown Alkane	20.675	380	J	
2.	Unknown Alkane	21.675	320	J	
3.	Unknown Alkane	22.339	430	J	
4.	Unknown Alkane	23.905	360	J	
5.	Unknown Alkane	24.589	260	J	
6.	Unknown Alkane	25.383	360	J	
7.	Unknown Alkane	25.422	310 .	J	
8.	Unknown Alkane	26.712	270	J	
9.	Unknown Alkane	27.893	270	J	1
10.	Unknown Alkane	28.966	210	J	
11.	Unknown Alkane	29.960	240	J	
12.	Unknown Alkane	30.885	270	J]
13.	Unknown Alkane	31.741	280	J	
14.	Unknown Alkane	32.606	290	JB	1
15.	Unknown Alkane	33.570	310	J	1
16.	1	34.691	!	J	
17.	Unknown Alkane Unknown Alkane	36.007.	1	J	
18.		39.487	•	J	
19.	Unknown Alkane	41.819	220	J	
20.	Unknown Alkane	1		İ	
21					1
22				1	
23					1
			.! <u></u> -		
25		_			
26			-	i	_
			_]
28			- — ————	i	261
29			-		-

6028-

EPA SAMPLE NO.

Lab	Name:	Lancaster	Laboratories	Contract:	
					and M-

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) SOIL Lab Sample ID: 4692570

Sample wt/vol: 30 (g/mL) g Lab File ID: hb067.d

Level: (low/med) LOW Date Received: 01/20/06

% Moisture: 13 Decanted: (Y/N) Date Extracted: 01/23/06

Concentrated Extract Volume: 500 (uL) Date Analyzed: 02/07/06

Injection Volume: 2 (uL) Dilution Factor: 1

GPC Cleanup: Y pH: Extraction: Sonc

CONCENTRATION UNITS:

Number TICs found: 20 (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q ======
		18.913	570	J
1.	Unknown Alkane	20.678	700	J
2.	Unknown Alkane	21.680	:	J
3.	Unknown Alkane	22.336	j 800	J
4.	Unknown Alkane	23.906	690	J
5.	Unknown Alkane	24.592	380	J
6	Unknown Alkane	25.378	1000	J
7.	Unknown Alkane	26.713	j 510	J
8.	Unknown Alkane Unknown Alkane	27.899	480	J
9.	•	28,977	400	j J
10.	Unknown Alkane	29.965	430	J
11.	Unknown Alkane	30.885	570	ј Ј
12.	Unknown Alkane	31.746	600	J
13.	Unknown Alkane	32.605	700	JB
14.	Unknown Alkane	33.574	710	J
15.	Unknown Alkane	34.690	I .	J
16.	Unknown Alkane	36.011	:	J
17.	Unknown Alkane	37.589		ij i
18:	Unknown Alkane	39.500	560	J
19.	Unknown Alkane	41.826	450	រៃ
20.	Unknown Alkane	41.020	1	i i
21			.	·
22			·	-
23				. '
24				·
			_	-
26		_	_	-
27			-	-¦'
28			_	- !
29			-	-
30			_	-

page 1 of 1

6008-

EPA SAMPLE NO.

Lab	Name:	Lancaster	Laboratories	Contract:	

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) SOIL Lab Sample ID: 4692571

Sample wt/vol: 30 (g/mL) g Lab File ID: hb068.d

Level: (low/med) LOW Date Received: 01/20/06

% Moisture: 14 Decanted: (Y/N) Date Extracted: 01/23/06

Concentrated Extract Volume: 500 (uL) Date Analyzed: 02/07/06

Injection Volume: 2 (uL) Dilution Factor: 1

GPC Cleanup: Y pH: Extraction: Sonc

CONCENTRATION UNITS:

Number TICs found: 20 (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
=========	== ====================================	=======	======== 490	===- - J	
1.	Unknown Alkane	18.912		i J	
2.	Unknown Alkane	20.675		J	
3.	Unknown Alkane	21.676	i 410	J	
4.	Unknown Alkane	22.340	540	J	
5.	Unknown Alkane	23.898	1	io i	
6.	Unknown Alkane	24.582	400	l J	
7.	Unknown Alkane	25.377	•	J	
8.	Unknown Alkane	25.417		! ;	
9.	Unknown Alkane	26.708	390	J	
10.	Unknown Alkane	26.788	!	J	
11.	Unknown Alkane	27.891	•	J	
12.	Unknown Alkane	28.966	,	J	
13.	Unknown Alkane	29.961	•	J	
14.	Unknown Alkane	30.878	380	J	
15.	Unknown Alkane	31.746	370	J	
16.	Unknown Alkane	32.603	360	JB	
17.	Unknown Alkane	33.568	360	J	
18.	Unknown Alkane	34.691	280	J	
19.	Unknown Alkane	36.009	300	J	
	Unknown Alkane	41.826	290	J	
20.		i	i	.	
21	,-			. I l	
22				.	
				.	,
24					i
25		- 1 			j
26		-			l
27					l
28		-	_	i	
29		-¦	-	-	3
30		-		- <u>'</u>	ĺ

EPA SAMPLE NO.

Lab 1	Name:	Lancaster	Laboratories	Contract:	

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Matrix: (soil/water) SOIL Lab Sample ID: 4692572

Sample wt/vol: 30 (g/mL) g Lab File ID: hb069.d

Level: (low/med) LOW Date Received: 01/20/06

% Moisture: 13 Decanted: (Y/N) Date Extracted: 01/23/06

Concentrated Extract Volume: 500 (uL) Date Analyzed: 02/07/06

Injection Volume: 2 (uL) Dilution Factor: 1

GPC Cleanup: Y pH: Extraction: Sonc

CONCENTRATION UNITS:

Number TICs found: 20 (ug/L or ug/Kg) ug/Kg

Number lies loui	14: 20 (49/1 01 49/1			
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================	=======================================	10 015	680	J
1.	Unknown Alkane	18.915 20.680		J
2.	Unknown Alkane	20.680	500	J
3.	Unknown Alkane	21.882	810	J
4.	Unknown Alkane	22.337	700	J
5.	Unknown Alkane	23.697	460	j j
6.	Unknown Alkane	25.379		J I
7.	Unknown Alkane	25.379	590	J I
8.	Unknown Alkane		510	J
9.	Unknown Alkane	26.712	1 320	, о ј
10.	Unknown Alkane	26.792	320 510	j J
11.	Unknown Alkane	27.898	1 410	l J
12.	Unknown Alkane	28.976	410 450	J
13.	Unknown Alkane	29.964	1 470	l J
14.	Unknown Alkane	30.884	470 450	l J
15.	Unknown Alkane	31.744	!	l J B
16.	Unknown Alkane	32.604	1	l J
17.	Unknown Alkane	33.571	350	, Ј 1 Ј
18.	Unknown Alkane	34.687	320	! -
19.	Unknown Alkane	36.009	290	J
20.	Unknown Alkane	39.498	350	J
21		ļ	ļ	<u> </u>
22		ļ		ļ
23		ļ <u></u>	<u> </u>	ļ
24.		ļ		ļ
25.		!	<u> </u>	ļ
26		. 	<u> </u>	ļ
27		.	.	ļ
28.		<u> </u>		.
29		.l <u></u>		ļ
30.		.l	.	.!
		.l <u></u>		.l <u></u>

page 1 of 1

壁匠 17

|SBLKLB0218

EPA SAMPLE NO.

Lab Name:Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) SOÎL	Lab Sample ID: SBLKLB021
Sample wt/vol: 30 (g/mL) g	Lab File ID: hb057.d
Level: (low/med) LOW	Date Received:
% Moisture: Decanted: (Y/N)	Date Extracted: 01/23/06
Concentrated Extract Volume: 500 (uL)	Date Analyzed: 02/06/06
Injection Volume: 2 (uL)	Dilution Factor: 1

GPC Cleanup: Y

pH: Extraction: Sonc

CONCENTRATION UNITS:

Number TICs found: 1 (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	 RT	 EST. CONC.	•
1.	== ===================================	32.605	====================================	====== J
_	•	1 32.003	, , , , , , , , , , , , , , , , , , ,	,
2		·		¦
3		<u> </u>		
4 ·		·		
5		1		i
6		1		
7				<u> </u>
8 9				
10.				i
11				
12.				
13				l
14.				l
15			l	<u> </u>
16		l	l	l
17.				İ
18				
19		_	<u> </u>	l
20.		.	l	l
21.		_l		l
22		.		
23.		.		l
24.		.	l	
25		_l	l	<u> </u>
26		.	1	
27.				
28.		_l		<u></u>
29		_		
30.		.	<u> </u>	1
			1	

CLIENT: Tierra Solutions, Inc.

SDG: PNV88

LANCASTER LABORATORIES

CLP Pesticides/PCBs

MATRIX

LLI	SAMPLE	WATER	SOLID	LEACHATE	COMMENT	
SAMPLE #	CODE				<u>.</u>	
BLANKA	PBLKE8		X		Method Blank	
4692565	6005-		X		Unspiked	
4692565MS	6005-MS		X		Matrix Spike	
4692565MSD	6005-MSD		X		Matrix Spike Dup	
4692566	6020-		X			
4692567	6014-		Χ .			
4692568	6007-		X			
4692569	6024-		X			
4692570	6028-		X			
4692571	6008-		X			
4692572	6010-		X			
BLANKA	PBLKFG	X	1		Method Blank	
LCSA	LCSG8	X			Laboratory Control Spike	
LCSDA	LCSD25	X			Laboratory Control Spike Dup	
4693387	EB1J-	X	-			
		l			<u> </u>	

A. Sample Preparation:

Florisil cleanup was used to minimize interferences in all samples. An additional GPC cleanup was used to minimize interferences in the soil samples. No other problems were encountered with the preparation of the samples.

B. Analysis:

The analysis was performed using the following runs:

• 1D1353, 1D1353B, 4D1353, 4D1353B

No problems were encountered. All continuing calibration data meet the method specification.

C. Quality Control:

All reported surrogates are within the QC limits.

The matrix spike data are within the QC limits.

The LCS data are within the QC limits.

D. Data Interpretation:

The method blank was evaluated to the MDL. Values between the MDL and the LOQ are reported with a "J" qualifier.

Beta-BHC was detected in method blank PBLKFG at a level of 0.011 ug/l. Beta-BHC was also detected in the associated sample, EB1J-, at a level of 0.0052 ug/l.

No further interpretation is needed.

Data codes:

Data that indicates that manual integration was required would include the following codes: 1 = missed peak and 2 = improper baseline. The peaks that have been manually changed are indicated with an "M" on the raw data.

Narrative reviewed and approved by:

Jenifer E. Hess, Manager Pesticide Residue Analysis

Date

Chain-of-Custody Record

7

CHAIN OF CUSTODY RECORD

PAGE ___ OF ___

NO. 7959	ANALYSES WAS ASSESSED TO THE PARTY OF THE PA		COMMENTS	100	144 702+ 6	1 Dan B. Buch	yen 1	P[EK]1								ER LABS		6662 9396			DAKD DAYS
	ATIVES	The last to the last		XX	メメ	× ×	×	XX	×	××	XX					Deliver To: LADCASTER	Method of Delivery: FGD - EX	Airbill Number: 20543	NOTES:		TURN AROUND TIME: STANDARD DAYS
	Toledo, OH 3401 Gendale Ave. Suite 300 Toledo, OH 43814 Phone: (419)365-5018 Fax: (419)365-5487	SAMPLE TITRES PRESENANTINES METALS	COLLECTION DATE/TIME	11/06-16/20 X X	10:45 X X	1/19/06/9/15 X X	1/19/06/1:55 X X	1/19/06-6:45 X X X	X X 25:01 29/11	1/19/06/11/30 X X	1/18/06/11:10 X X	\		\	\	DATE	DATE	TIME	Chile me 6900	- UNB LISE (MUST BE RETURNED WITH R	- CAB USE
es, inc.	Dindlamapolis. IN Divason. OH Asolon. OH Codran Road Sule 174 Sule to Referency Dr. Sule 174 Sule to Reson. OH 45040 Sule 174 Sule to Reson. OH 45040 Sule 175 Sule 1	Phase:	SAMPLE NO. OF TYPE & ID CONT.	: \$010030 45	:\$010030 @E	:50/0030 25	: 5010030 #5	: 5010080 25	: SO/0050 ₩5	: 5005020 45	: 5005035 3 5		:			TIME: 1/11/06 RECEINED BY:	1	:ii	TIME (OCC)	ည	ASTROM.
& associates, inc.	Doublin, OH Stay Enerated Parkeasy 63 Stay Enerated Parkeasy 63 Stay Enerated Parkeasy 63 Stay Enerated Parkeasy 63 Stay Enery (614)783-9077 PREPORT TO: Enery	Client: TERM SOLUTSHE: TRINES/12.6 Project # TIE 033 Pha	PROJECT SAMPLE NO. LOCATION	TIE023: 6005	1 : 6020	h107:	1007:	1,6034	: 6028	800%:	0107: 1	••		•	••	RELINDUISHED BY:	RELINQUISHED BY:		RELINGUISHED BY:	(N) COOLER TEMPERATURE AS RECEIVED:	

Environmental Sample Administration Receipt Documentation Log

Client/Project: Tieco	roetulos a	Shipping Container Sealed: Y N					
Date of Receipt:	-20-0b In	Custody Seal Present: Y (N)					
Time of Receipt:	0900	Custody Sea	Il Intact: Y / N / NA				
Source Code:	50-1	Package Ch	nilled Not Chilled				
		Unpacker Emp	. No.: 1255				
	Temperature of Sh	ipping Containe	rs				
#1			#2				
Thermometer ID:	559	Thermometer	ID:				
Temp.:	ه۔ ه	Temp.:					
Temp Bottle (Surface Temp			/ Surface Temp.				
Wet Ice / Dry Ice / Ice Pac	ks	1	Ice / Ice Packs				
Ice Present? Y N	Loose (Bagged)	Ice Present?	<u> </u>				
#3			#4				
Thermometer ID:		Therecometer ID:					
Temp.:		Temp.:					
Temp. Bottle / Surface Temp).	Temp. Bottle / Surface Temp.					
Wet Ice / Dry Ice / Ice Pack	s		Ice / Ice Packs				
Ice Present? Y / N	Loose / Bagged		Y / N Loose / Bagged				
Paperwork Discrepancy/Unpa	acking Problems: Tie	? 023-60	05-5010030 (1) EncreTO The S The S				
	77	e 023- le	008-5005020 fue clived3				
			got ID				
		En	COON				
	Sample Administration In	ternar Chain of C	Custody				
Name	Date	Time	Reason for Transfer				
KatlaBinkOen	1-2006	1030	Unpacking / Storage				
Da Weslund	160/06	1115	Place in Storage or (Entry				
			Remove from Storage				
		e	Place in Storage or Entry				
			Entry @823				

ociates, inc.

CHAIN OF CUSTODY RECORD

G101/97524/4693387

NO. 7960

1 5 1

PAGE __

AMALY9ES 02486941022546

MOH/JACY/B

e

PRESERVATIVES

3401 Glendate Ave. (8.41th 2004)
3401 Glendate Ave. (8.41th 2004)
Toledo, OH 43614
Toledo, OH 43614
Toledo, OH 43614
Toledo, OH 43614
Toledo, OH 43614
Toledo, OH 43614

Suite A Solon, OH 44139 Phone: (440)519-2555 Fax: (440)519-2560

DMsson, OH 6 4900 Parkway Dr. 6 8 50 Msson, OH 45040 8 Phone: (513)459-9877 F Fax: (513)459-9869 P

CDublin_OH Classes 6330 E. 7545 St. 840 St. 84

Solon, OH 6161 Cochan Road

Subnith 123/00 COMMENTS 184 र्ह 2 Method of Delivery: FED - EX Airbil Number: 8543 66 Deliver To: LANCASTER P-RINE N-NOT PLENED B-BOTH × A-Cost unty, ed day, C B-1400g pH-Q C-14,800g pH-Q D-1800H ph-13 E-Zhvorien + NaCH, pH-0 F-14, 9 O (ADORY) 1/20/04/4:00 1 COLLECTION DATE/TIME DATE Ä METALS RECEIVED BY: RECEIVED BY 8.0 P.05 4 M. TEXNYSON DATE: 1-20-06 3000 JOI 3000 g SAMPLE TYPE & ID INC BEACH 皇 DATE Phase Samplers: J. MIELECKI, Š PAINESVICLE SAMPLE Project #. Tie 033 REPORT TO: 8166 EB 1 LIBRRA RELINQUISHED BY PROJECT Tie 083 옃

9385

6669

Airbill Number:

NOTES:

DATE //21/06 050

TP.

TIME

Ë

TURN AROUND TIME: SHALLOARD DAYS

- LAB USE (MUST BE RETURNED WITH REPORT)
- LAB USE

DISTRUBUTION: WHITE

ပ

35.

IN COOLER TEMPERATURE

RELINCKISHED BY:

AS RECEIVED:

- RETAINED BY HUAL

Environmental Sample Administration Receipt Documentation Log

Client/Project: Tierra	solutions Inc	Shipping Co	ntainer Sealed Y / N
Date of Receipt: 1/21/0 C		Custody Sea	l Presency / N
Time of Receipt:		Custody Sea	I Intact! Y / N / NA
Source Code: _50-(_		Package: Ch	illed Not Chilled
		Unpacker Emp	. No.: 169C
	Temperature of Sh	nipping Containe	15
#1			#2
Thermometer ID: 429983	3	Thermometer	ID:
Temp.: 3,5°		Temp.:	
Femp. Bottle / Surface Temp.		Temp. Bottle	Surface Temp.
Wet Ice / Dry Ice / Ice Packs		1	Ice / Ice Packs
Ice Present? (Y) N	Loose (Bagged)	Ice Present?	
#3			#4
Thermometer ID:	· · · · · · · · · · · · · · · · · · ·	Thermometer I	D:
Temp.:		Temp.:	
Temp. Bottle / Surface Temp.			Surface Temp.
Wet Ice / Dry Ice / Ice Packs		Wet Ice / Dry	Ice / Ice Packs
Ice Present? Y / N	Loose 7 Bagged	Ice Present?	Y / N Loose / Bagged
Paperwork Discrepancy/Unpac	king Problems: <u>r</u> c	elived 6	É trip blanks
	mple Administration In	ternal Chain of C	Custody
Name	Date	Time	Reason for Transfer
Sayson I bach	1/21/06	1045	Unpacking to total
(Mm)	1/21/06	1133	Place in Storage or Entry
	,		Remove from Storage
	- <u> </u>		Place in Storage or Entry
			Entry 8825

Secure Storage Chain of Custody Original Sample

Client/Project: Tierra Solutions, Inc - Painesville, OH

88

Preservative:

HCI

Matrix: WW

SDG:

PNV68. *

Sample # Range of Entry Group: 4693387 , 470

Bottle Type: (38) 40 ml glass vial

x- An/226, 2/8/06

Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)
4693387, 470	(964)	VOA Storage	1/21/06	1330	Entry to Storage	
4693387 470	VOA 570 RAGE	SUD/1551	01/23/06	98:12	transfer	
4693387, 470	560/1551	DEPT. 21 STORAGE	01/23/06	08,30	570 RAGE	
4693367,470	Desto)	ful 983	1/24/06	14:30	GCIMS VOA A715	<u> 6</u>
4693387,470	Sum Sul 989	J, Long 1693	1/24/06	16:30	shift change	
4693387,470	J. Long	Dept 31 Shrege	1/24/66	21:20	Analysis complek	
_	,	0-				
÷						
						8827

Secure Storage Chain of Custody Subsample

Client/Project: Tilla Solutions, Inc.	
Preservative: Sodium Risutate	Matrix: <u> </u>
Sample # Range for Entry Group: 4692565-72	Bottle Type: <u>/93</u>
SDG: PNY86	

Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)
4692565-72	1292 S.Bowles	08.21 (tologe	1-20-ds		Storage	
4092565-72	orgeto)	from (180	1/20/06	01@/ 130	Stoppel Clims UOB analysis #115 1+075 0 t auto-	06 874 483 1 pspop
4692565-72	Inom In/489	st.P 7586 anlosand	1/20/16	2:00	a regular	
4192565-12	*	407506	1/26/06	*	# P 7 566 auto andlyin Llift charge	
4692 565-72	HP7566	Jul 183	1/31/06	01:25	stift drawe	
4692515-72	In my	Storage	1/3/106	08:00	Dastol Storage	
·						
					i i i i i i i i i i i i i i i i i i i	27

* COC was onother not signed for shift dange by Miles on 1/26/06 and then 2355 Rev. 04/15/99 to autosample

Secure Storage Chain of Custody Original Sample

Client/Project: Tierra Solutions, Inc -- Painesville, OH

Preservative:

Na2S2O3

Matrix:

WW

SDG:

PNV88

Sample # Range of Entry Group: 4693387,470

Bottle Type: (30) 1000 ml amber glass

Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)
4693387	(964) Como	SA Hold Storage	1/21/06	1330	Entry to Storage	
4693 387	SA hold Stonau	main Stonace	1-24-06	9:40	stonace	
4693387	uprit toward	Alwalm 1313	1-26-06	USU	Posticide Extraction	<i>Y</i>
મહ્લ33૯7	Alumin 1213	Lixino	1-26-06	1315	Storage	
		-				
						8878:

Secure Storage Chain of Custody Original Sample

Client/Project: Tierra Solutions, Inc - Painesville, OH

Preservative:

Na2S2O3

Matrix:

WW

SDG:

PNV88

Sample # Range of Entry Group: 4693387,470

Bottle Type: (45) 1000 ml amber glass

Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)
4693387	(961)	SA Hold Storage	1/21/06	1330	Entry to Storage	
469 3387	su hold storage	JLM/532	1-24.06	60.70	trunsfer to Storage outro to Storage	
469 3387	JIMI532	storage	1-24-06	01:00	ortio to Storage	
**	• .					
-						
-						
					-	
			-			
					<u> · </u>	9979

Secure Storage Chain of Custody Supplemental Information

Client/Project:	ierra So	Intions,	Inc.			
Preservative:				M	latrix: ww	
Sample # Range for	Entry Group	o: <u>469</u> 33	87	В	ottle Type: <u>45 - /</u> 0	ounl.
SDG: KPNV	88-09 EL	3	. <u> </u>			
Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)
4693387	SA Shuace	CLA 1646	1-26-06	14:25	supplemental chain CLP Hro	
4693387	main	Dunly Turky	1-26.06	0850	prep	X
4963387	Daly Trun 277	Tunk Mush Storage	1-26-06	150	Storage	
		<i>J</i>				
			·			
					·	
		-				

This form has been designed to accompany the original sample chain of custody. steprovides additional information for periods of time when the sample group is split and individual samples are in the custody of different personnel.

Pg.1-62

Secure Storage Chain of Custody Subsample

Client/Project: Tierra Solutions, Inc-Pa	rinesville off
· · · · · · · · · · · · · · · · · · ·	Matrix: Soi(
Sample # Range for Entry Group: 4692565-72	Bottle Type: 21 1000m 1 91955
SDG: PNV88	Composite (20) 500ml glass
	(a) 34 M 9632

					(0)	11 -71-10-1
Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)
4692565-22	1201	Storage.	1-20.06	1435	Storage	
4697565-72	MOUNT	MM1424	1-23-06	5:30	715 Semi Sul Sourcatrol	
4697565-72	MM1474_	Main Storage	1-23-06	6200	storage	
449 256 5 - 72	Main storage	fmg /234	1/23/06	1700	PH .	
4692565-72	finy 1234	Main Toruge	1/23/06	1900	storage.	
4692865-72	nair Storisi	Sfreibe 120i	1-2404	1715	Moist	
4692565-72	iffeira 1201	Storge	1-2406.	1734	Storag	
4692565-72	main storage	Danils Sul	1-24-06	2135	crit digest	λ
4692565-72	Daniel S.S.T	main Storage	1-25-06	0235	storage	
469 2565-72	Main	Alanalier 1313	1-25-06	0600	CLP Rot Extraction	Χ
4692565-72	Danier 1313		1-25-04	661C	Storage	
469.2565-72	man Storage	CyTian 1242	01-25-06	16:45	CNPRP	Х
4692565-72	C471242	Man- 3torage	01-25-6	12:15	Storage	
4692565-72	Main Starzes	Daniel S. S. H	1-25-04	2100	cr digert	
4692565-72	Samil 55 d	main Storze	1-26-04	0330	Storad	
4612565-72	meults Storage	Mecidia 1026	1-30-66	0736	ORP 7557	
4492565-72	word idea	moun Stornage	. 1-30-04	0745	Strage	9 31

Lancaster Laboratories

Organic Extraction Secure Storage Chain of Custody Extract

BATCH NO	o. 060	21SLB0	26						
Clien	t Tierra	Solutions, I	nc.						
SDC	3: PNV88]	Analysis	s:	_		_	•
Sample	IDs ·			Semivola	atiles CLP	Soils		<u>:</u>	
4692565	4692566	4692567	4692568	4692569	4692570	4692571	4692572		

Sample Number(s)	Released by	Received by	Date	Time	Reason for Change of Custody
4692565-572	WW147-8	Dept 76 Storage SEEC 2433	1.)3.00	9:00	Storage
4692/057570	Storage	エス CRC	بكامته	17.00	
4692565-572	12 GPU	· JUVILLY Jet	1-2406		concertration
4697565-57)	MILLIZ	Dept He Storver	1-24-06	20:00	Storage
M565-372	2060 Sp	Hatenstuk	01/20/20	99:0≥	CLP ANALYS IS
108568-372	HMANNE	4801629	Orpolor	23:00	TUSMUNTEIT 40072WF
46925-512	HP34624 A	(3+6) arranh	2-7.06	AM 10:30	RELAP
469,3565-572	Ju famblica	Drul 26 Slage	2-1-06	AM 10:55	STORALE
	1	!			
! !				1	1
		:			
			· 	:	:
			· 		•
		!			
				1	9032
! !	<u> </u>	i	; ;	1	1

Lancaster Laboratories

Organic Extraction Secure Storage Chain of Custody Extract

BATCH NO. 06025WAC026	
Client Tierra Solutions, Inc.	
SDG: PNV88	Analysis:
Sample IDs	Semivolatiles CLP Waters
4693387	

Sample Number(s)	Released by	Received by	Date	Time	Reason for Change of Custody
4693387	Duly Trum 277	Lightey extractor	1/26/66	1430	CLP to prip
1693387	Lighting extractive	Ript 36 Strange	1/27/06	0930	5701-35 BM4478 174-56
t693351	pept 36	M147-4	1/26/01	9:00	GMIMPE 174.56 CONCENTRATION
1693341		. Dept 76 Stevere	: 	70200	storacyl
443387	STOPAGE	Hallyson	1/400000 09/6/10A		UP ANAMSIS
4493387	House	7 80 109 29	<i>B11016</i> 0	1	MARINALITY (10 CIDENS
188894	41804029	Hoteletti	03/08/04 0	1.15	tronuntera mon orumal
16933897	Thurstun	STORAGE	02/00/00	, , 1'.16	STOPLANCE
			•	:	
	:		<u> </u>		
	!				
		1		1	
	:		·		
	!			-j 	<u> </u>
			i	1	9833
	<u> </u>		·	:	1

Lancaster Laboratories

Organic Extraction Secure Storage Chain of Custody

Extract

BATCH NO	060	0240016	Α		- -				
Clien	t Tierra S	Solutions, I	nc.						
SDG	: PNV88		j	Analysi	s:			_ •	
Sample	IDs		. <u> </u>	Pesticide	es CLP Soi	ls		<u></u>	
4692565	4692566	4692567	4692568	4692569	4692570	4692571	4692572		

Sample Number(s)	Released by	Received by	Date	Time	Reason for Change of Custody
4692565-72	sdCmarthin ₁₃₁₃	7736 (GPC) Gorage	1-25-06	i100	Gorage
469355-72	stores p	CAC	i Zaci	17:00	haded on OC For Cleamp
4692565-72	ABC 7 GRC	M41498_			Contextration
4692565-72	MMI424	Dept 24 Storage	1.7606	70.0c	Store ye
4692565-72	GLPT 24 STERAGE	RIL	1/30/6	0230	PRESCREW & ANALYSES
			<u> </u>	!	1
			_:	<u>!</u>	·
			-		
					!
		!	<u> </u>	 	
			<u>:</u>		ī
		1		<u>.</u>	<u> </u>
;			 		
			·		1
		1			BB34
			:		

Lancaster Laboratories

Organic Extraction Secure Storage Chain of Custody

_					
-	v	Ť١		^	٩
_	^	u	a		ı

BATCH NO.	060250019A		
Client	Tierra Solutions, Inc.		
SDG:	PNV88	Analysis:	
Sample ID	s	Pesticides CLP Waters	-
4693387			

Sample Number(s)	Released by	Received by	Date	Time	Reason for Change of Custody
4693387	M(ainhi 1313	DRZY Storage	1/26/14	1315	Storage
1653387	DEFT LY	120	•	•	ANALYSIS
		: !	<u>:</u>		,
				: 	
	:			·;	
	:				
		· · · · · · · · · · · · · · · · · · ·			
		1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·	1
			:		883

Volatiles by GC/MS Data

QC Summary

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab	Name:_	Lancaster	Laboratories	Contract:	-1-
Lab	Code:	LANCAS	Case No.:	SAS No.:	SDG No.:PNV88

_					
1				SMC3	TOT
į	SAMPLE NO.	(DCA)#	(TOL)#	(BFB)#	OUT
1	========	=====	=====	=====	===
01	VBLKR34	103	100	100	0
02	EB1J-	105	101	100	0
03	TBPNV	106	100	99	0
j.		l	l	l	iI

				QC LIMITS
SMC1	(DCA)	=	1,2-Dichloroethane-d4	(76-114)
SMC2	(TOL)	=	Toluene-d8	(88-110)
SMC3	(BFB)	=	4-Bromofluorobenzene	(86-115)

page 1 of 1

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

D Surrogate diluted out

2B SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: ___Lancaster Laboratories ___ Contract: _____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:PNV88

Level: (low/med) LOW

EPA	SMC1	SMC2	SMC3	TOT
SAMPLE NO.	(DCA)#	(TOL)#	(BFB)#	OUT
========	=====	=====	======	===
VBLKR37	101	103	86	0
LCSR37	102	103	88	0
LCDR37	101	102	87	0
6005-	106	115	79	0
6005-MS	106	116	70	0
6020-	107	127	65	0
6014-	105	122	68	0
6007-	109	112	74	0
6024-	108	110	78	0
6028-	108	108	79	0
6008-	113	109	77	0
6010-	110	108	78	0
	İ	l		l
	SAMPLE NO.	SAMPLE NO. (DCA)# ===================================	SAMPLE NO. (DCA) # (TOL) #	SAMPLE NO. (DCA) # (TOL) # (BFB) #

QC LIMITS
SMC1 (DCA) = 1,2-Dichloroethane-d4 (70-121)
SMC2 (TOL) = Toluene-d8 (84-138)
SMC3 (BFB) = 4-Bromofluorobenzene (59-113)

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

D Surrogate diluted out

3B SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.:SDG No.:
Matrix Spike - EPA Sample No.:6005	Level: (low/med) LOW

COMPOUND (ug/ ====================================	==== =======	==== ==================================	== =====	=====
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- ^ ^ ^		مہ آ	i - 0 - 1 - 0
Benzene	:_	_38.74 37.97	_86 80	59-172 66-142
Trichloroethene44.9	~\ -	34.42	76	62-137
Toluene		44.04	88	59-139
Chlorobenzene	5 _0.00	33.33	_ ⁷⁴	60-133

COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD % REC #	\	_	IMITS REC.
	========	=======================================	=====	=====	=====	=====
1,1-Dichloroethene	l	l				59-172
Benzene	l	1			ļ	66-142
Trichloroethene	l			ļ		62-137
Toluene	l		l <u></u>			59-139
Chlorobenzene			l			60-133
			l	İ	<u> </u>	l

- # Column to be used to flag recovery and RPD values with an asterisk
- * Values outside of QC limits

Spike Recovery:	0	out of	5	outside limits		
COMMENTS:				<u> </u>		

FORM III VOA-1

OLM03.0

Lancaster Laboratories, Inc. Volatiles Laboratory Control Sample Recoveries

LCS: rj26l01.d Client ID: LCSR37 Method: SOW OLMO3.2 Instrument: HP07566

LCS Duplicate: rj26l02.d Client ID: LCDR37 Matrix/Level: SL Dilution Factor: 1.0

Batch: R060261AA

COMPOUND NAME	SPIKE LEVEL	LCS CONC UG/Kg	LCSD CONC UG/Kg	LCS REC	LCSD REC	Range LOWER-UPPER	RP		RPD MAX	INSPEC
1.1-Dichloroethene	50.00	54.52	54.30	109	108	59-172		0	22	YES
Benzene	50.00	51.33	51.90	103	104	66-142		1	21	YES
Trichloroethene	50.00	51.42	51.42	103	103	62-137		0	24	YES
Toluene	50.00	53.25	52.58	106	105	59-139		1	21	YES
Chlorobenzene	50.00	51.77	51.32	104	103	60-133		1	21	YES

Lab Chronicle:	N/C = Could not calculate Ent. by
	Ver. by

Page 1 of 1

VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKR37

Lab	Name:_	_Lancaster	Laboratories	Contract:	
Lab	Code:	LANCAS	Case No.:	SAS No.:	SDG No.:

Lab Sample ID: VBLKR37 Lab File ID: rj26b01.d

Time Analyzed: 17:32 Date Analyzed: 01/26/06

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N) Y

Instrument ID: HP07566

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
Ì	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
İ	=======================================	=========	=======================================	========
01	LCSR37	LCSR37	rj26101.d	17:59
02	LCDR37	LCDR37	rj26102.d	18:25
03	6005-	4692565	rj26s01.d [,]	19:07
04	6005-MS	4692565	rj26s02.d	19:34
05	6020-	4692566	rj26s03.d	20:01
06	6014-	4692567	rj26s04.d	20:27
07	6007-	4692568	rj26s05.d	20:54
08	6024-	4692569	rj26s06.d	21:21
09	6028-	4692570	rj26s07.d	21:48
10	6008-	4692571	rj26s08.d	22:15
11	6010-	4692572	rj26s09.d	22:42
Ī			l	·

COMMENTS:	R060261AA					
		 		 		

4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKR34

Lab	Name:	Lancaster	Laboratories	Contract:	Í
Lab	Maine:—	_Hancascer	Edbord corres		1

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Lab File ID: rj24b01.d Lab Sample ID: VBLKR34

Date Analyzed: 01/24/06 Time Analyzed: 18:56

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N) N

Instrument ID: HP07566

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

1	EPA	LAB	LAB	TIME
i	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
Ì	=======================================	==========	=======================================	=========
01	TBJ18	4691287	rj24s01.d	19:29
02	EB1J-	4693387	rj24s02.d	19:54
03	TBPNV	4693470	rj24s03.d	20:19
04	INJ18DL	4691286	rj24s04.d	20:44
05	INJ18	4691286	rj24s05.d	21:09
06	VIBLKR01	VIBLKR01	rj24s06.d	21:34
07	INJ18MS	4691286	rj24s07.d	21:58
08	VIBLKR02	VIBLKR02	rj24s08.d	22:23
09	INJ18MSD	4691286	rj24s09.d	22:48
		, 		

COMMENTS:	R060241AA			
	<u></u>		 	

8843

5A . VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name:	Lancaster	Laboratories	Contract:
-----------	-----------	--------------	-----------

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:___

Lab File ID: rj26t02.d BFB Injection Date: 01/26/06

Instrument ID: HP07566 BFB Injection Time: 08:36

GC Column: DB-624 ID: .25 (mm) Heated Purge: (Y/N) Y

ı — —		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		=======================================
50	8.0 - 40.0% of mass 95	24.2
75	30.0 - 66.0% of mass 95	57.5
1 95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.0
1 173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 120.0% of mass 95	74.6
1 175	4.0 - 9.0% of mass 174	4.3 (5.8)1
176	93.0 - 101.0% of mass 174	74.4 (99.8)1
1 177	5.0 - 9.0% of mass 176	4.9 (6.5)2
1 / /		l

1-Value is % mass 174 2-Value is % mass 176

				22.00	TIME
- 1	EPA	LAB	LAB	DATE	LIME
i	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
į	=======================================	==========	=======================================	========	========
01	VSTD050	VSTD050	rj26i03.d	01/26/06	09:58
02	VSTD100	VSTD100	rj26i04.d	01/26/06	10:57
03	VSTD200	VSTD200	rj26i05.d	01/26/06	11:24
04	VSTD050	VSTD050	rj26cv1.d	01/26/06	11:50
05	VSTD010	VSTD010	rj26i07.d	01/26/06	12:50
06	VSTD010	VSTD020	rj26i08.d	01/26/06	13:34
	, ,	1PPBMDL	rj26m01.d	01/26/06	15:48
07	VSTD001	l ISSOMDI	1)20m01.a		ļ
		·	<u> </u>	l	1

5A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	Lancaster	Laboratories	Contract:

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Lab File ID: rj26t03.d BFB Injection Date: 01/26/06

BFB Injection Time: 16:33 Instrument ID: HP07566

GC Column: DB-624 ID: .25 (mm) Heated Purge: (Y/N) Y

1		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		=======================================
50	8.0 - 40.0% of mass 95	25.3
75	30.0 - 66.0% of mass 95	60.7
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.1
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 120.0% of mass 95	68.6
175	4.0 - 9.0% of mass 174	5.3 (7.7)1
176	93.0 - 101.0% of mass 174	68.3 (99.5)1
177	5.0 - 9.0% of mass 176	4.7 (6.9)2
İ		
	1-Value is % mass 174 2-Value is % mass	s 176

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	=======================================	=======================================	=======	========
01	VSTD050	VSTD050	rj26c01.d	01/26/06	16:59
02	VBLKR37	VBLKR37	rj26b01.d	01/26/06	17:32
03	LCSR37	LCSR37	rj26101.d	01/26/06	17:59
04	LCDR37	LCDR37	rj26102.d	01/26/06	18:25
05	6005-	4692565	rj26s01.d	01/26/06	19:07
06	6005-MS	4692565	rj26s02.d	01/26/06	19:34
07	6020-	4692566	rj26s03.d	01/26/06	20:01
08	6014-	4692567	rj26s04.d	01/26/06	20:27
09	6007-	4692568	rj26s05.d	01/26/06	20:54
10	6024-	4692569	rj26s06.d	01/26/06	21:21
11	6028-	4692570	rj26s07.d	01/26/06	21:48
12	6008-	4692571	rj26s08.d	01/26/06	22:15
13	6010-	4692572	rj26s09.d	01/26/06	22:42

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

			DIGITAL ESCRET	
				•
Lab	Name:	Lancaster	Laboratories	Contract:

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Lab File ID: rj24t02.d BFB Injection Date: 01/24/06

Instrument ID: HP07566 BFB Injection Time: 11:18

GC Column: DB-624 ID: .25 (mm) Heated Purge: (Y/N) N

		% RELATIVE
,	ION ABUNDANCE CRITERIA	ABUNDANCE
m/e	ION ADONDMED CATTERED	=======================================
====	8.0 - 40.0% of mass 95	18.6
50		50.1
75	30.0 - 66.0% of mass 95	100.0
95	Base peak, 100% relative abundance	6.4
96	5.0 - 9.0% of mass 95	0.0 (0.0)1
173	Less than 2.0% of mass 174	75.0
174	50.0 - 120.0% of mass 95	5.6 (7.5)1
175	4.0 - 9.0% of mass 174	73.7 (98.3)1
176	93.0 - 101.0% of mass 174	4.3 (5.9)2
177	5.0 - 9.0% of mass 176	1
<u>.</u>		176
	1-Value is % mass 174 2-Value is % mas	S 1/0

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
=====================================	VSTD010 VSTD020 VSTD050 VSTD100 VSTD200 VSTD200 VSTD200	=====================================	01/24/06 01/24/06 01/24/06 01/24/06 01/24/06 01/24/06 01/24/06	11:40 12:05 12:30 13:53 14:18 14:42 15:07

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Lancaster I	Laboratories	Contract:
-----------------------	--------------	-----------

Lab File ID: rj24t06.d BFB Injection Date: 01/24/06

Instrument ID: HP07566 BFB Injection Time: 17:57

GC Column: DB-624 ID: .25 (mm) Heated Purge: (Y/N) N

		% RELATIVE
l m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
1=====		=======================================
50	8.0 - 40.0% of mass 95	21.8
75	30.0 - 66.0% of mass 95	51.3
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.0
173	Less than 2.0% of mass 174	0.3 (0.3)1
174	50.0 - 120.0% of mass 95	78.7
175	4.0 - 9.0% of mass 174	6.2 (7.9)1
176	93.0 - 101.0% of mass 174	75.2 (95.4)1
177	5.0 - 9.0% of mass 176	5.3 (7.0)2

1-Value is % mass 174 2-Value is % mass 176

1	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=========	========	=======================================	========	=======
01	VSTD050	VSTD050	rj24c01.d	01/24/06	18:19
02	VBLKR34	VBLKR34	rj24b01.d	01/24/06	18:56
03	TBJ18	4691287	rj24s01.d	01/24/06	19:29
04	EB1J-	4693387	rj24s02.d	01/24/06	19:54
05	TBPNV	4693470	rj24s03.d	01/24/06	20:19
06	INJ18DL	4691286	rj24s04.d	01/24/06	20:44
07	INJ18	4691286	rj24s05.d	01/24/06	21:09
08	VIBLKR01	VIBLKR01	rj24s06.d	01/24/06	21:34
09	INJ18MS	4691286	rj24s07.d	01/24/06	21:58
10	VIBLKR02	VIBLKR02	rj24s08.d	01/24/06	22:23
11		4691286	rj24s09.d	01/24/06	22:48
	1				l

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Lab File ID (Standard): rj26c01.d Date Analyzed: 01/26/06

Instrument ID: HP07566 Time Analyzed: 16:59

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N) Y

		IS1 (BCM)		IS2(DFB)		IS3 (CBZ)	
ĺ		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=========	===== = ==	=====	========	======	=======	=====
	12 HOUR STD	127773	6.572	821126	7.958	764162	11.252
	UPPER LIMIT	255546	7.072	1642252	8.458	1528324	11.752
	LOWER LIMIT	63886	6.072	410563	7.458	382081	10.752
Ì	=========	=======	======	=======	======	========	======
İ	EPA SAMPLE						
ĺ	NO.						
	========		======	=== = =====	======	=======	======
01	VBLKR37	122025	6.572	772372	7.964	692698	11.255
02	LCSR37	123243	6.574	808883	7.960	709496	11.251
03	LCDR37	123910	6.569	805910	7.961	716702	11.253
04	6005-	99353	6.568	636233	7.954	484230	11.251
05	6005-MS	109920	6.569	705962	7.961	527198	11.252
06	6020-	98982	6.566	631809	7.961	416707	11.252
07	6014-	102033	6.572	638276	7.958	455728	11.252
08	6007-	100656	6.572	638447	7.961	516775	11.252
09	6024-	106405	6.569	663703	7.961	552889	11.252
10	6028-	97243	6.569	618684	7.961	517559	11.252
11	6008-	102195	6.572	655354	7.958	545745	11.253
12	6010-	101563	6.570	634505	7.959	534429	11.253
		l	l			l	

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1, 4 - Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

8848

[#] Column used to flag values outside QC limits with an asterisk

^{*} Values outside of QC limits.

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Lab File ID (Standard): rj24c01.d Date Analyzed: 01/24/06

Instrument ID: HP07566 Time Analyzed: 18:19

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N) N

							
- 1		IS1(BCM)		IS2 (DFB)		IS3 (CBZ)	
i		AREA #	RT #	AREA #	RT #	AREA #	RT #
i	========	=======================================	======	==============	======	=======	======
i	12 HOUR STD	136116	6.584	835083	7.970	774764	11.255
į	UPPER LIMIT	272232	7.084	1670166	8.470	1549528	11.755
i	LOWER LIMIT	68058	6.084	417542	7.470	387382	10.755
. i	===========	========	======	========	======	=======	=====
i	EPA SAMPLE					,	ļ
i	NO.			:			
i	==========	========	======	=======	======	========	======
01	VBLKR34	132168	6.590	816372	7.979	752633	11.260
02	TBJ18	130082	6.588	805558	7.971	745261	11.256
03	EB1J-	127341	6.588	785122	7.971	726147	11.256
04	TBPNV	124931	6.591	768278	7.974	714418	11.255
05	INJ18DL	124489	6.587	771961	7.976	714301	11.257
06	INJ18	126621	6.587	779301	7.973	731953	11.257
07	VIBLKR01	122169	6.594	757317	7.980	703659	11.258
08	INJ18MS	118567	6.591	744601	7.977	705670	11.258
09	VIBLKR02	120576	6.584	751077	7.973	693147	11.255
10	INJ18MSD	120252	6.584	739276	7.970	707030	11.258
	<u> </u>	İ	l		l	l	

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ)=Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

8849

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

Sample Data

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab	Name:	Lancaster	Laboratories	Contract:	
Lab	Code:	LANCAS	Case No.:	SAS No.:	SDG No.:

Matrix: (soil/water) SOIL Lab Sample ID: 4692565

Sample wt/vol: 6.19 (g/mL) g Lab File ID: HP07566.i/06jan26b.b/rj26s01.d

Level: (low/med) LOW Date Received: 01/20/06

Moisture: not dec. 12 Date Analyzed: 01/26/06

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/K	(g) MDL ug/Kg	Q
74-87-3	Chloromethane	2	U
, · -	Vinyl Chloride	2	ן ט
· -	Bromomethane	3	ן ט
75-00-3	Chloroethane	3	υ
	1,1-Dichloroethene	2	ן ט
67-64-1		10	
	Carbon Disulfide	4	J
	Methylene Chloride	2	ן ט
	1,1-Dichloroethane	0.9	ן ט
	1,2-Dichloroethene (Total)	2	ן ט
	2-Butanone	` 6	ן ט
	Chloroform	0.9	ן ט
	1,1,1-Trichloroethane	0.9	ן ט
	Carbon Tetrachloride	0.9	ן ט
71-43-2		2] J
	1,2-Dichloroethane	2	ן ט
	Trichloroethene	0.9	ן ט ן
	1,2-Dichloropropane	3	ן ט
	Bromodichloromethane	2	ן ט
	cis-1,3-Dichloropropene	0.9	ן ט ן
	4-Methyl-2-Pentanone	3	ן ט
108-88-3		4	J
	trans-1,3-Dichloropropene	0.9	ן ט
	1,1,2-Trichloroethane	2	U
	Tetrachloroethene	0.9	ן ט ן
	2-Hexanone	3	ן טן
	Dibromochloromethane	0.9	ן ט
	Chlorobenzene	0.9	U
1	Ethylbenzene	0.9	ן ט
	Xylene (Total)	2	j J
		_	

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		6005-
Lab Name: Lancaster Laboratories	Contract:	İI
Lab Code: LANCAS Case No.:	SAS No.:	SDG No.:
Matrix: (soil/water) SOIL	Lab Sample ID: 4692565	
Sample wt/vol: 6.19 (g/mL) g	Lab File ID: HP07566.i/06	6jan26b.b/rj26s01.d
Level: (low/med) LOW	Date Received: 01/20/06	
Moisture: not dec. 12	Date Analyzed: 01/26/06	
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0	
Soil Extract Volume: (uL)	Soil Aliquot Volume:	_ (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) MDL ug/	Kg Q
100-42-5Styrene 75-25-2Bromoform 79-34-51,1,2,2-Tetra		0.9 U 0.9 U 0.9 U

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

		-
ļ	6005-	
ı		

EPA SAMPLE NO.

Lab	Name:	Lancaster	Laboratories	Contract:	İİ

Matrix: (soil/water) SOIL

Lab Sample ID: 4692565

Sample wt/vol: 6.19 (g/mL) g Lab File ID: HP07566.i/06jan26b.b/rj26s01.d

Level: (low/med) LOW

Date Received: 01/20/06

% Moisture: not dec. 12 Date Analyzed: 01/26/06

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

Number TICs found: 12

(ug/L or ug/Kg) ug/Kg

: CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	=======================================	======	========	=====[
1.	Unknown	2.34	520	J
2.	Unknown	2.85	53	J
3.	Unknown alkane	3.14	42	J
4.	Unknown alkane	4.40	24] J
5. 96-14-0	Pentane, 3-methyl-	4.79	8	UM
6. 110-54-3	Hexane	5.19	17	UJ
7.	Unknown alicyclic	6.11	8	J
l 8.	Unknown hydrocarbon	7.04	17	J
9. 108-87-2	Cyclohexane, methyl-	8.58	8	NJ
10.	Unknown siloxane	10.33	6	JB
111.	Unknown siloxane	12.34	16	ЈВ
112.	Unknown siloxane	13.65	6	J
13		İ	<u> </u>	
14		i		ll
15	' 	i		
16				li
17		i		<u> </u>
18				İI
19		i		l l
20		i		l
21				łl
22				<u> </u>
23		i		l
24				1
25				l
26				l
27				
28		i]
29		i		l
30.		1		\
		İ		
1	.		. ———	

6298

6005-

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4692565

File: /chem/HP07566.i/06jan26b.b/rj26s01.d

Sample: 6005-;4692565;2;0;; Injected At: 26-JAN-2006 19:07

Calibration Time: 29-JUN-2005 10:37

Target Method: ROLM32SL.m Blank Reference: rj26b01.d

Sublist: 7157

Sample Concentration Formula: On-Column Amount * (Vt/Ws) Matrix: SOIL

Batch:R060261AA

Analyst:JML01693

Instrument ID: HP07566.i

Standard Reference: rj26c01.d

Prep Factor:0.81 Units: ug/Kg

Level: Low

Sample Wt./Vol.: 6.1900 g (Ws)

Volume Purged: 5.0 ml (Vt)

Internal Standards	RT(+/-RT)	Scan	QIon ====	Area(+/- %Area)	Conc(ext)	QC Flag
43) Bromochloromethane	6.568(0.005)	1551	128	99353(-22)	50.00	
58) 1.4-Difluorobenzene	7.954 (0.005)	1983	114	636233(-23)	50.00	
91) Chlorobenzene-d5	11.251(0.001)	3011	117	484230(-37)	50.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.			Conc.	. QC	
Surrogate Standards	Ref. RT (+/-RRT)	QIon	Area	(on column)	%Rec. flags	QC Limits
=======================================	======================================	=====		*******		========
50) 1,2-Dichloroethane-d4	(1) 7.354(-0.001)	65	351340	53.287	106%	70 - 121
78) Toluene-d8	(3) 9.821(0.000)	98	739467	57.697	115%	84 - 138
103) 4-Bromofluorobenzene	(3) 12.239(0.000)	95	205206	39.546	79%	59 - 113

= RELATIVE RETENTION TIME OUT OF RANGE * = PERCENT REC.OUT OF RANGE D = DILUTED OUT NC = NOT ABLE TO CALCULATE

	I.S.				Conc.	Conc.	Blank	F	Reporting	ı
Target Compounds	Ref.	RT (+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	POO
			2=====	======	=======================================	*********	=======	======	======	======
2) Chloromethane	(1)				ND	ND			1.62	8.08
3) Vinyl Chloride	(1)				ND	ИD			1.62	8.08
5) Bromomethane	(1)				ИD	ND			2.42	8.08
6) Chloroethane	(1)				ND	ND			2.42	8.08
10) 1.1-Dichloroethene	(1)				ND	ND	•		1.62	8.08
16) Acetone	(1)	3.723(-0.002)	43	25041	10.837	8.75			5.65	8.08
18) Carbon Disulfide	(1)	3.992(0.001)	76	76162	4.577	3.70		J	2.42	8.08
22) Methylene Chloride	(1)				ND	ND			1.62	8.08
26) trans-1,2-Dichloroethene	(1)				ND	ND			1.62	8.08
31) 1.1-Dichloroethane	(1)				ND	ND			0.81	8.08
37) cis-1,2-Dichloroethene	(1)				ND	ИD			1.62	8.08
40) 2-Butanone	(1)				ND	- ND			5.65	8.08
45) Chloroform	(1)				ND	ND			0.81	8.08
46) 1,1,1-Trichloroethane	(2)				ND	ND			0.81	8.08
49) Carbon Tetrachloride	(2)				ND	ND			0.81	8.08
38) 1,2-Dichloroethene (Total)	(1)				ND	ND			1.62	8.08
52) Benzene	(2)	7.453(-0.001)	78	44710	2.150	1.74		J	0.81	8.08
53) 1,2-Dichloroethane	(1)				ND	. ND			1.62	8.08
61) Trichloroethene	(2)				ND	ND			0.81	8.08
66) 1,2-Dichloropropane	(2)				ND	ND			2.42	8.08
71) Bromodichloromethane	(2)				ND	ND			1.62	8.08
75) cis-1,3-Dichloropropene	(2)			•	ND	ND			0.81	8.08
76) 4-Methyl-2-Pentanone	(3)	•			ND	NĐ			2.42	8.08
80) Toluene	(3)	9.894(0.000)	91	87930	4.830	3.90		J	0.81	8.08
	-									

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Page 1 of 2

6005-

Lancaster Laboratories Quantitation Report GC/MS Volatiles

4692565

File: /chem/HP07566.i/06jan26b.b/rj26s01.d

Sample: 6005-;4692565;2;0;; Injected At:26-JAN-2006 19:07 Calibration Time: 29-JUN-2005 10:37

Target Method: ROLM32SL.m Blank Reference: rj26b01.d

E = CONC. OUT OF CAL. RANGE

Sublist: 7157

Sample Concentration Formula: On-Column Amount * (Vt/Ws)

Batch:R060261AA

Analyst:JML01693

Instrument ID:HP07566.i

Standard Reference: rj26c01.d

Prep Factor:0.81 Units: ug/Kg

RELATIVE RETENTION TIME OUT OF RANGE

Matrix: SOIL

Level: Low

Sample Wt./Vol.: 6.1900 g (Ws)

Volume Purged: 5.0 ml (Vt)

	I.S.					Conc.	Conc.	Blank		Reporting	ſ
Target Compounds	Ref.	RT	(+/-RRT)	Qīon	Area	(on column)	(in sample) Conc.	Qual.	Limit	LOQ
=======================================	===± = :		========	*****	========		============			======	
81) trans-1,3-Dichloropropene	(2)					ND	ND			0.81	8.0
83) 1,1,2-Trichloroethane	(2)					ND	ND			1.62	8.0
85) Tetrachloroethene	(3)					ND	ND			0.81	8.0
87) 2-Hexanone	(3)					ND	ND			2.42	8.0
88) Dibromochloromethane	(2)					ND	ND			0.81	8.0
92) Chlorobenzene	(3)					. ND	ND	•		0.81	8.0
94) Ethylbenzene	(3)					ND	ND			0.81	8.0
95) m+p-Xylene	(3)	11.476	5(-0.001)	106	17410	2.258	1.	82	J	0.81	8.0
96) Xylene (Total)	(3)			106	17410	2.288	. 1.	85	J	0.81	8.0
97) o-Xylene	(3)					ND	ND			0.81	8.
98) Styrene	(3)					ND	ND			0.81	8.
99) Bromoform .	(2)					ND	ND			.0.81	8.
08) 1,1,2,2-Tetrachloroethane	(3)					ND	ИD			0.81	8.0

Comments:

Analyst:

Date: 2/3/00

Auditor:

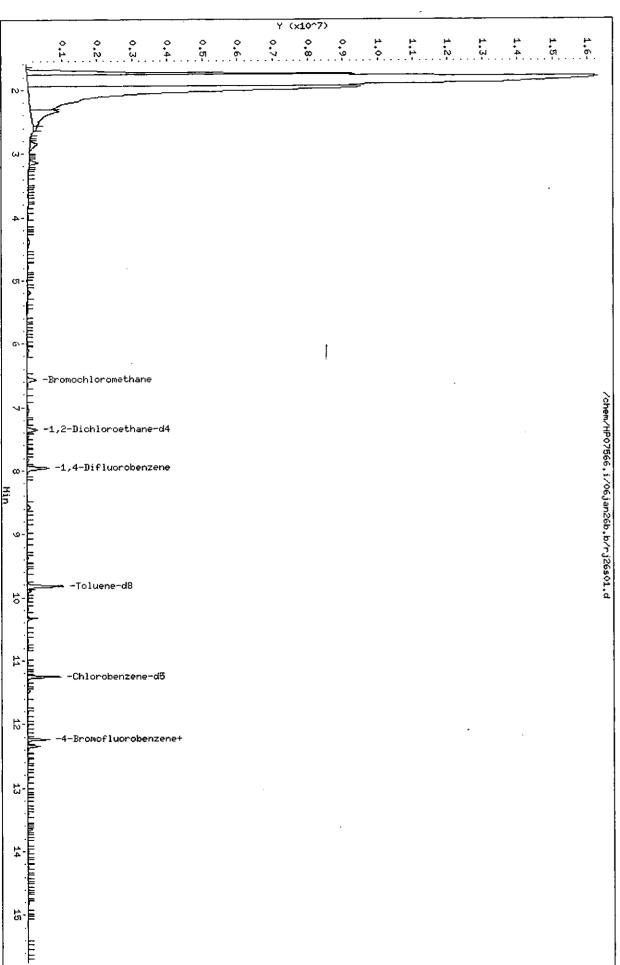
_ . 7.

Page 2 of 2

Data File: /chem/HP07566.i/06jan26b.b/rj26s01.d

Client ID: 6005-Date : 26-JAN-2006 19:07

Sample Info: 6005-;4692565;2;0;;


Column phase: DB-624

Instrument: HP07566.i

Operator: JML01693 Column diameter: 0.25

0056

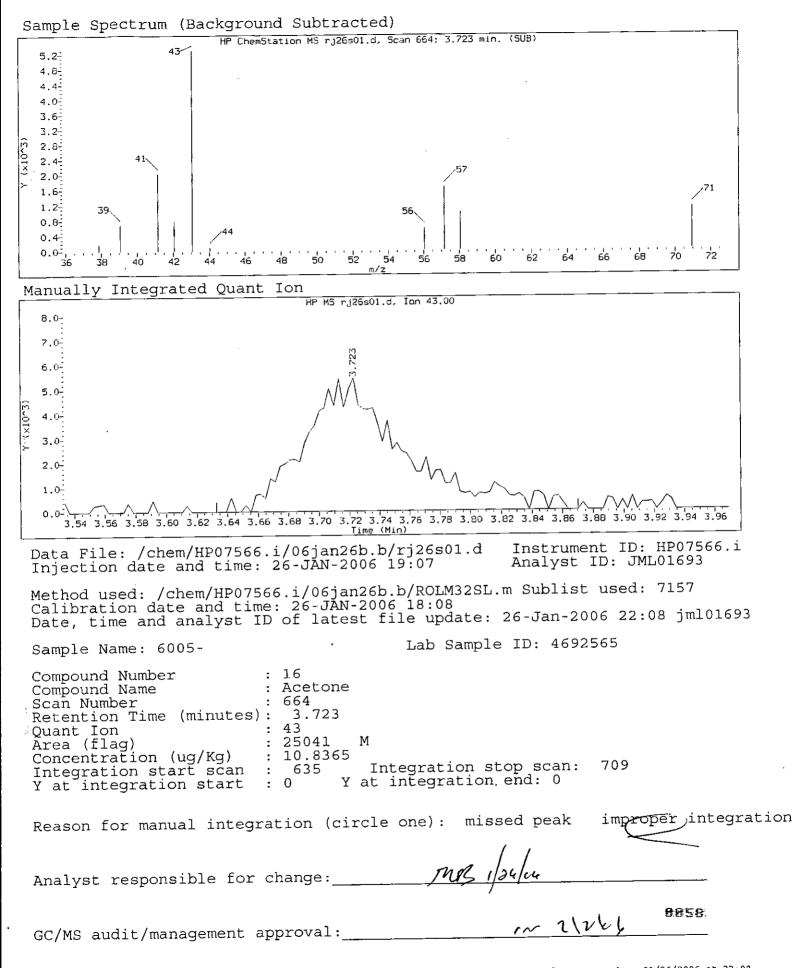
Page 1

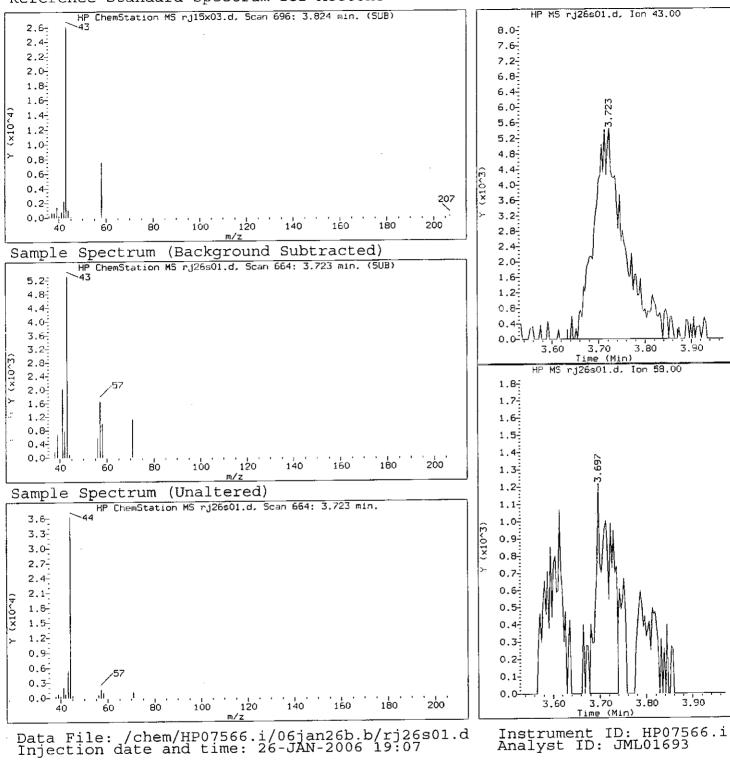
Quant Report

Target Revision 3.5

Instrument ID: HP07566.i Analyst ID: JML01693 Data File: /chem/HP07566.i/06jan26b.b/rj26s01.d Injection date and time: 26-JAN-2006 19:07

Method used: /chem/HP07566.i/06jan26b.b/ROLM32SL.m Sublist used: 7157 Calibration date and time: 29-JUN-2005 10:37 Date, time and analyst ID of latest file update: 03-Feb-2006 09:47 rvn00349

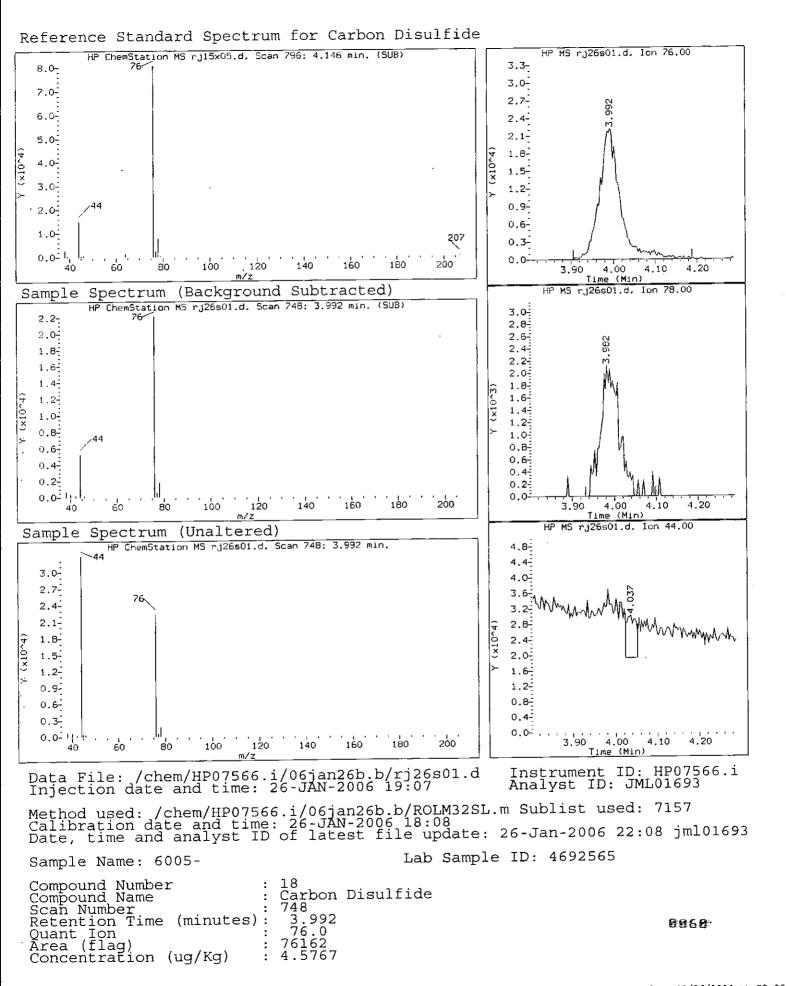

Sample Name: 6005-

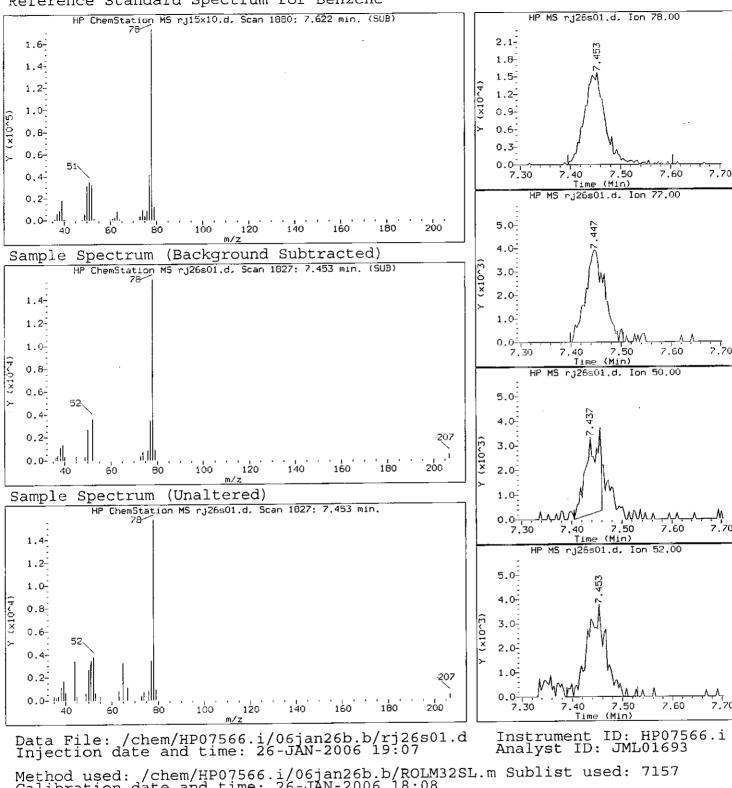

Lab Sample ID: 4692565

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
16) Acetone 18) Carbon Disulfide 43)*Bromochloromethane 52) Benzene 58)*1,4-Difluorobenzene 80) Toluene 91)*Chlorobenzene-d5 95) m+p-Xylene 96) Xylene (Total) 50)\$1,2-Dichloroethane-d4 78)\$Toluene-d8 103)\$4-Bromofluorobenzene	(1) (1) (2) (2) (3) (3) (3) (3) (1) (3)	3.723 3.992 6.568 7.453 7.954 9.894 11.251 11.476	43 76 128 78 114 91 117 106 106 65 98	25041M 76162 99353 44710 636233 87930 484230 17410 17410 351340 739467 205206	10.837 4.577 50.000 2.150 50.000 4.830 50.000 2.258 2.288 53.287 57.697 39.546

M = Compound was manually integrated.

* = Compound is an internal standard.
\$ = Compound is a surrogate standard.


Method used: /chem/HP07566.i/06jan26b.b/ROLM32SL.m Sublist used: 7157 Calibration date and time: 26-JAN-2006 18:08 Date, time and analyst ID of latest file update: 26-Jan-2006 22:08 jml01693


Sample Name: 6005-

Lab Sample ID: 4692565

Compound Number Compound Name 16 Acetone 664 Scan Number 3.723 43.0 Retention Time (minutes) Quant Ion Area (flag) 25041 M 10.8365 Concentration (ug/Kg)

8859

Method used: /chem/HP07566.i/06jan26b.b/ROLM32SL.m Sublist used: 7157 Calibration date and time: 26-JAN-2006 18:08 Date, time and analyst ID of latest file update: 26-Jan-2006 22:08 jml01693

Sample Name: 6005-

Lab Sample ID: 4692565

Compound Number Compound Name Benzene 1827 Scan Number 7.453 78.0 Retention Time (minutes) Quant Ion Area (flag) 44710 Concentration (ug/Kg) 2.1497

9861